首页> 外文学位 >Development of a practical and mobile brain-computer communication device for profoundly paralyzed individuals.
【24h】

Development of a practical and mobile brain-computer communication device for profoundly paralyzed individuals.

机译:为深陷瘫痪的个人开发了一种实用的移动式脑机通信设备。

获取原文
获取原文并翻译 | 示例

摘要

Brain-computer interface (BCI) technology has seen tremendous growth over the past several decades, with numerous groundbreaking research studies demonstrating technical viability (Sellers et al., 2010; Silvoni et al., 2011). Despite this progress, BCIs have remained primarily in controlled laboratory settings. This dissertation proffers a blueprint for translating research-grade BCI systems into real-world applications that are noninvasive and fully portable, and that employ intelligent user interfaces for communication. The proposed architecture is designed to be used by severely motor-impaired individuals, such as those with locked-in syndrome, while reducing the effort and cognitive load needed to communicate. Such a system requires the merging of two primary research fields: 1) electroencephalography (EEG)-based BCIs and 2) intelligent user interface design.;The EEG-based BCI portion of this dissertation provides a history of the field, details of our software and hardware implementation, and results from an experimental study aimed at verifying the utility of a BCI based on the steady-state visual evoked potential (SSVEP), a robust brain response to visual stimulation at controlled frequencies. The visual stimulation, feature extraction, and classification algorithms for the BCI were specially designed to achieve successful real-time performance on a laptop computer. Also, the BCI was developed in Python, an open-source programming language that combines programming ease with effective handling of hardware and software requirements. The result of this work was The Unlock Project app software for BCI development. Using it, a four-choice SSVEP BCI setup was implemented and tested with five severely motor-impaired and fourteen control participants. The system showed a wide range of usability across participants, with classification rates ranging from 25-95%.;The second portion of the dissertation discusses the viability of intelligent user interface design as a method for obtaining a more user-focused vocal output communication aid tailored to motor-impaired individuals. A proposed blueprint of this communication "app" was developed in this dissertation. It would make use of readily available laptop sensors to perform facial recognition, speech-to-text decoding, and geo-location. The ultimate goal is to couple sensor information with natural language processing to construct an intelligent user interface that shapes communication in a practical SSVEP-based BCI.
机译:在过去的几十年中,脑机接口(BCI)技术取得了巨大的发展,大量突破性的研究表明了技术的可行性(Sellers等,2010; Silvoni等,2011)。尽管取得了这些进展,但BCI仍主要保持在受控的实验室环境中。本论文为将研究级BCI系统转换为无创,完全可移植,并采用智能用户界面进行通信的实际应用提供了一个蓝图。提出的体系结构旨在供严重运动障碍的人(例如患有锁定综合征的人)使用,同时减少交流所需的精力和认知负担。这样的系统需要两个主要研究领域的融合:1)基于脑电图(EEG)的BCI和2)智能用户界面设计。;本论文基于EEG的BCI部分提供了该领域的历史以及我们软件的详细信息和硬件实现,以及一项旨在基于稳定的视觉诱发电位(SSVEP)来验证BCI实用性的实验研究得出的结果,SSVEP是在受控频率下对视觉刺激的鲁棒性大脑反应。 BCI的视觉刺激,特征提取和分类算法经过特殊设计,可在便携式计算机上实现成功的实时性能。而且,BCI是用Python开发的,这是一种开放源代码编程语言,将编程的简便性与对硬件和软件要求的有效处理结合在一起。这项工作的结果是用于BCI开发的The Unlock Project应用程序软件。使用它,实施了四选择式SSVEP BCI设置,并与五名严重运动障碍和十四名控制参与者进行了测试。该系统在参与者之间显示了广泛的可用性,分类率在25%到95%之间。论文的第二部分讨论了智能用户界面设计的可行性,该智能用户界面设计作为一种获得更多以用户为中心的语音输出通信帮助的方法为运动障碍人士量身定做。本文提出了该通信“应用程序”的拟议蓝图。它将利用随时可用的笔记本电脑传感器执行面部识别,语音到文本解码和地理位置定位。最终目标是将传感器信息与自然语言处理相结合,以构建智能用户界面,从而在基于SSVEP的实际BCI中塑造通信。

著录项

  • 作者

    Lorenz, Sean.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Biology Neuroscience.;Computer Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号