首页> 外文学位 >Development of suspension plasma sprayed lanthanum perovskite ceramic layers for clean energy technologies.
【24h】

Development of suspension plasma sprayed lanthanum perovskite ceramic layers for clean energy technologies.

机译:用于清洁能源技术的悬浮等离子喷涂钙钛矿镧陶瓷层的开发。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is devoted to developing the suspension plasma spraying process for fabricating ceramic layers applicable to green energy technologies, i.e., solid oxide fuel cell cathodes and oxygen separation membranes. The materials of interest for this study include the mixed ionic and electronic conducting perovskite lanthanum strontium cobalt ferrite (LSCF), its composite with yttria-stabilized zirconia (YSZ), and the excellent electronically, but less ionically, conductive perovskite lanthanum nickel ferrite (LNF). The objective of this thesis is to investigate the processing-property relationships between the plasma spray parameters and resulting properties of coatings fabricated with them, and to use the resulting understanding to fabricate dense coatings for oxygen separation membranes and porous coatings for fuel cell cathodes on stainless steel substrates.;It was observed that fairly dense LSCF coatings can be fabricated by suspension plasma spraying, but the gas-tightness was dictated by the coating thickness required to bridge the surface pores on the supporting metal substrate. Higher porosity of the cathode layers was obtained by adding carbon black pore former into the feedstock suspension, and single-phase LSCF cathodes made in this way exhibited excellent symmetrical fuel cell performance with a polarization resistance of 0.062 Ocm2 at 744°C. Fabricating an LSCF/YSZ composite by plasma spray processing was more difficult, because the plasma power must be sufficient to melt the YSZ phase without decomposing the LSCF phase. The composite cathodes fabricated had lower performances than those of the single-phase cathodes. The suspension plasma sprayed LNF cathodes had higher polarization resistances and lower durability than those of suspension plasma sprayed LSCF cathodes due to severe material decomposition. Therefore, single-phase LSCF cathodes were chosen for short-term and medium-term durability testing in full fuel cells. It was demonstrated that suspension plasma sprayed single-phase LSCF cathodes with the fine microstructures, and thus, large surface area for reactions, performed comparably to more-expensive dry powder plasma sprayed LSCF/SDC composite cathodes in a complete fuel cell, even though the latter cathodes have a higher overall ionic conductivity.
机译:本文致力于开发悬浮等离子体喷涂工艺,以制造适用于绿色能源技术的陶瓷层,即固体氧化物燃料电池阴极和氧分离膜。这项研究感兴趣的材料包括混合的离子和电子导电钙钛矿镧锶钴铁氧体(LSCF),其与氧化钇稳定的氧化锆(YSZ)的复合材料,以及优异的电子但非离子导电的钙钛矿镧镍铁氧体(LNF) )。本文的目的是研究等离子喷涂参数与所制得涂层的性能之间的加工性能关系,并利用所获得的知识来制造用于氧气分离膜的致密涂层和用于不锈钢上燃料电池阴极的多孔涂层。观察到可以通过悬浮等离子喷涂制备相当致密的LSCF涂层,但是气密性取决于桥接支撑金属基质上的表面孔所需的涂层厚度。通过在原料悬浮液中加入炭黑成孔剂,可以得到较高的阴极层孔隙率,用这种方法制得的单相LSCF阴极在744°C时具有出色的对称燃料电池性能,极化电阻为0.062 Ocm2。通过等离子喷涂工艺制造LSCF / YSZ复合材料更加困难,因为等离子功率必须足以熔化YSZ相而不分解LSCF相。所制造的复合阴极具有比单相阴极更低的性能。悬浮等离子喷涂的LNF阴极比悬浮等离子喷涂的LSCF阴极具有更高的极化电阻和更低的耐久性,这是由于严重的材料分解。因此,选择单相LSCF阴极进行全燃料电池的短期和中期耐久性测试。结果表明,与完整的燃料电池中昂贵的干粉等离子喷涂的LSCF / SDC复合阴极相比,悬浮等离子喷涂的单相LSCF阴极具有良好的微观结构,因此具有较大的反应表面积,即使在燃料电池中后面的阴极具有较高的总离子电导率。

著录项

  • 作者

    Fan, Eric Sheung-Chi.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Alternative Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号