首页> 外文学位 >Protein engineering of toluene monooxygenases for synthesizing hydroxylated aromatics.
【24h】

Protein engineering of toluene monooxygenases for synthesizing hydroxylated aromatics.

机译:甲苯单加氧酶的蛋白质工程,用于合成羟基化的芳香族化合物。

获取原文
获取原文并翻译 | 示例

摘要

Toluene monooxygenases from pseudomonads are powerful enzymes for aromatic hydroxylation. The goal of this study is to engineer toluene monooxygenases to explore different hydroxylation reactions for making industrially-important singly- or doubly-hydroxylated aromatic products such as 1-naphthol (15,000 ton/yr market). It was discovered that wild type toluene 4-monooxygenase (T4MO) from Pseudomonas mendocina KR1, toluene para-monooxygenase (TpMO, formally toluene 3-monooxygenase) from Ralstonia pickettii PKO1, and toluene ortho-monooxygenase from Burkholderia cepacia G4 perform three successive hydroxylations of benzene. To control these successive hydroxylations, two-phase reactors have also been designed to produce phenol from benzene and 2-naphthol from naphthalene using T4MO. In addition, toluene 3-monooxygenase was discovered to hydroxylate monosubstituted benzenes predominantly at the para position, instead of the meta position as was reported previously, and was renamed as TpMO. Hence, the toluene degradation pathway was modified for R. pickettii PKO1 to explain the physiological significance of the different hydroxylation pattern.;T4MO was discovered here to oxidize nitrobenzene to 4-nitrocatechol, to oxidize naphthalene to 1-naphthol (52%) and 2-naphthol (48%), to oxidize o-cresol to 3-methylcatechol (91%) and methylhydroquinone (9%), to oxidize m-cresol and p-cresol to 4-methylcatechol (100%), as well as to oxidize o-methoxyphenol to 4-methoxyresorcinol (87%), 3-methoxycatechol (11%), and methoxyhydroquinone (2%). T4MO and TpMO mutants capable of synthesizing hydroxylated products with high efficiency and different regiospecificity were discovered through protein engineering via directed evolution and saturation mutagenesis at various positions of the α subunits TmoA and TbuA1 (I100, G103, A107, T201, F205, A213, and E214). The combination of error-prone PCR and saturation mutagenesis created the best 4-nitrocatechol producing mutant T4MO TmoA I100A with a 16-fold higher rate of 4-nitrocatechol formation than wild-type T4MO. The regiospecific oxidation of o-methoxyphenol and o-cresol was changed for the significant synthesis of 3-methoxycatechol, methoxyhydroquinone, 3-methylcatechol, and methylhydroquinone by the variants TmoA G103A/A107S, G103S, G103S/A107T, and G103S/A 107G. (Abstract shortened by UMI.).
机译:来自假单胞菌的甲苯单加氧酶是用于芳香族羟基化的强大酶。这项研究的目的是设计甲苯单加氧酶,以探索不同的羟基化反应,以制造工业上重要的单羟基或双羟基化芳族产品,例如1-萘酚(每年15,000吨)。发现来自门氏假单胞菌KR1的野生型甲苯4-单加氧酶(T4MO),来自Ralstonia pickettii PKO1的甲苯对单单加氧酶(TpMO,正式为甲苯3-单加氧酶)和来自伯克霍尔德酒原G4的甲苯原-单加氧酶进行三个连续的羟化反应苯。为了控制这些连续的羟基化反应,还设计了两相反应器,使用T4MO从苯生产苯酚,从萘生产2-萘酚。另外,发现甲苯3-单加氧酶主要在对位而不是先前报道的间位羟基化单取代的苯,并被重命名为TpMO。因此,修改了R. pickettii PKO1的甲苯降解途径,以解释不同羟基化模式的生理学意义。此处发现T4MO可将硝基苯氧化为4-硝基邻苯二酚,将萘氧化为1-萘酚(52%)和2 -萘酚(48%),将邻甲酚氧化为3-甲基邻苯二酚(91%)和甲基氢醌(9%),将间甲酚和对甲酚氧化为4-甲基邻苯二酚(100%),以及氧化邻甲氧基苯酚变成4-甲氧基间苯二酚(87%),3-甲氧基邻苯二酚(11%)和甲氧基氢醌(2%)。通过定向改造和饱和诱变,在α亚基TmoA和TbuA1(I100,G103,A107,T201,F205,A213和A113的各个位置)上通过蛋白质工程发现了能够高效合成羟基化产物且具有不同区域特异性的T4MO和TpMO突变体E214)。易错PCR和饱和诱变相结合,产生了最佳的产生4-硝基邻苯二酚的突变体T4MO TmoA I100A,其4-硝基邻苯二酚的形成速率是野生型T4MO的16倍。通过变体TmoA G103A / A107S,G103S,G103S / A107T和G103S / A 107G,改变了邻甲氧基苯酚和邻甲酚的区域特异性氧化,从而可以显着合成3-甲氧基邻苯二酚,甲氧基对苯二酚,3-甲基邻苯二酚和甲基对苯二酚。 (摘要由UMI缩短。)。

著录项

  • 作者

    Tao, Ying.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 285 p.
  • 总页数 285
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号