首页> 外文学位 >Self-adaptive methods for acoustic focusing and mode extraction in a shallow ocean waveguide.
【24h】

Self-adaptive methods for acoustic focusing and mode extraction in a shallow ocean waveguide.

机译:浅海波导中声聚焦和模式提取的自适应方法。

获取原文
获取原文并翻译 | 示例

摘要

Acoustic propagation in shallow water environments is dominated by interactions with the air/water and water/sediment interfaces, leading to complicated spatio-temporal behavior of the acoustic field. This complexity has proven challenging to the development of shallow ocean acoustic detection, communication, and tomographic applications. One approach to shallow ocean acoustics has been to combine the physics of waveguides with thorough measurement and characterization of the propagation environment to generate accurate acoustic models. However, the costs of characterizing the environment often prove prohibitive. This dissertation develops self-adaptive methods for use in shallow ocean acoustic applications that require no a-priori knowledge of the environment. In contrast to past trends that viewed the complexity of the shallow ocean as a burden, these self-adaptive techniques capitalize on the diversity of the propagation medium. Methods are developed for using vertical geometry acoustic transducer arrays to extract information from the sampled acoustic fields in a range-independent environment. In one scenario, the acoustic response sampled between a pair of arrays is iterated to generate an estimate for the response at longer ranges. In another scenario, a single array is used to extract the modes of acoustic propagation in a range-independent waveguide using a single, partial water column spanning vertical array of acoustic transducers. The mode extraction method is applied to both an ensemble of stationary broadband sources as well as a moving narrowband source subject to arbitrary accelerations. These methods are combined with existing time-reversal techniques to produce a high resolution acoustic focus at an arbitrary location in the shallow ocean waveguide. Simulation, laboratory and at sea experiments support the theory. Though acoustic imaging applications are emphasized in this work, these methods may prove useful for both communications and tomography applications as well.
机译:浅水环境中的声传播主要是与空气/水和水/沉积物界面的相互作用,从而导致声场的复杂时空行为。事实证明,这种复杂性对浅海声学检测,通信和层析成像应用程序的发展具有挑战性。解决浅海声学的一种方法是将波导的物理特性与传播环境的全面测量和特征相结合,以生成准确的声学模型。然而,表征环境的成本通常被证明是过高的。本论文开发了一种适用于不需要先验环境知识的浅海声学应用的自适应方法。与过去将浅海的复杂性视为负担的趋势相反,这些自适应技术利用了传播介质的多样性。开发了用于使用垂直几何声学换能器阵列从与范围无关的环境中的采样声场中提取信息的方法。在一种情况下,对在一对阵列之间采样的声学响应进行迭代,以生成对较长范围响应的估计。在另一种情况下,使用单个阵列,使用跨越声换能器的垂直阵列的单个,部分水柱,在与范围无关的波导中提取声传播模式。模式提取方法既适用于固定宽带源的集合,也适用于经受任意加速度的移动窄带源。这些方法与现有的时间反转技术相结合,可在浅海波导中的任意位置产生高分辨率的声聚焦。仿真,实验室和海上实验均支持该理论。尽管在这项工作中强调了声学成像应用,但是这些方法可能对通信和层析成像应用都非常有用。

著录项

  • 作者

    Walker, Shane C.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 声学;
  • 关键词

  • 入库时间 2022-08-17 11:41:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号