首页> 外文学位 >TRPM5 Channels Contribute to Persistent Neural Activity and Working Memory.
【24h】

TRPM5 Channels Contribute to Persistent Neural Activity and Working Memory.

机译:TRPM5通道有助于持久性神经活动和工作记忆。

获取原文
获取原文并翻译 | 示例

摘要

Working memory is a type of memory that is active only for a short period of time (Fuster and Alexander, 1971; Goldman-Rakic, 1992). A common example of working memory is our ability to hold a phone number in our minds transiently, until it is dialed. Working memory is critical for many cognitive tasks, such as making decisions and guiding subsequent actions (Goldman-Rakic, 1992; Wickelgren, 2001). Deficits in working memory are associated with numerous pathological conditions, including schizophrenia, attention deficit hyperactivity disorder, aging, and stress (Birnbaum et al., 2004; Goldman-Rakic, 1992; Goldman-Rakic and Selemon, 1997). Therefore, it is important to understand the neural basis of working memory. During performance of a working memory task, pyramidal neurons in prefrontal cortex (PFC) are able to maintain sustained firing during a delay period between an informative cue and the appropriate behavioral response (Goldman-Rakic, 1995). Thus, stimulus-specific persistent neural activity is thought to be a neural substrate for holding memories over short time delays (Major and Tank, 2004). Once persistent activity is triggered within a neuron or neural circuit, its activity can be maintained after the stimulus has terminated. Three general (non-mutually exclusive) mechanisms of persistent activity have been hypothesized: recurrent network activity (Compte et al., 2000; Wang, 2001), short-term synaptic plasticity (Mongillo et al., 2008) and intrinsic biophysical cellular properties. Several studies have demonstrated the role of intrinsic biophysical cellular properties in persistent activity (Egorov et al., 2002; Egorov et al., 2006; Fransen et al., 2006). This firing behavior is linked to cholinergic muscarinic receptor activation and phospholipase C (PLC) signaling in the absence of synaptic reverberations. Two fundamental questions are: (1) What mechanism underlies the generation of sustained firing at a single cell level? (2) What role does intrinsic persistent firing play in working memory? Pharmacological studies suggest that persistent activity relies on activity of Ca2+-activated non-selective cation (CAN) current (ICAN) (Egorov et al., 2002; Egorov et al., 2006). However, the molecules that constitute CAN channels in the brain are not well studied, and the importance of CAN channels to working memory is unknown.;I seek to identify molecular mechanisms to convert subthreshold input into intrinsic persistent neural firing in PFC layer 5 pyramidal neurons. I hypothesize that CAN channels are responsible for the intrinsic properties that mediate persistent neural activity in PFC layer 5 neurons. During muscarinic receptor activation, bursts of action potentials will lead to Ca2+ influx. CAN channels will be activated due to the increased intercellular Ca2+ and promote a slow afterdepolarization (sADP), a transition state between subthreshold input and suprathreshold sustained firing. If the sADP is strong enough, it will trigger subsequent spikes, causing further opening of voltage-dependent Ca2+ channels and Ca2+ influx, and thus further opening of CAN channels. Therefore, ICAN will be maintained by a positive feedback loop, generating persistent activity. I have combined electrophysiology, pharmacology, genetics and behavioral analyses to address the potential roles of CAN channels and persistent activity in working memory.;First, I confirmed that in the presence of the muscarinic agonist carbachol a brief burst of action potentials triggers a prominent sADP and persistent activity in these neurons. Second, I confirmed that this sADP and persistent firing require activation of a PLC signaling cascade and intracellular calcium signaling. Third, I obtained direct evidence that the transient receptor potential melastatin 5 channel (TRPM5), which is thought to function as a CAN channel in non-neural cells, makes an important contribution to sADP and persistent activity in the layer 5 neurons. Importantly, Trpm5-/- mice show deficits in a Delayed-Non-Match-to-Sample maze (DNMTS) task, a working memory task in the mouse model. Furthermore, PFC-specific expression of TRPM5 using a virally-mediated delivery system in Trpm5-/- mice produced a partial rescue of deficits in the working memory tasks, indicating the importance of TRPM5 in mPFC for performance of these tasks. Lastly, I found that PFC-specific expression of TRPM5 partially rescued the electrophysiological defects in Trpm5-/- mice. By identifying an ion channel contributing to working memory, this work opens the possibility of discovering new drugs for treating working memory deficit.
机译:工作记忆是一种仅在短时间内活动的记忆(Fuster和Alexander,1971; Goldman-Rakic,1992)。工作记忆的一个常见示例是我们能够暂时保留电话号码,直到拨打电话为止。工作记忆对于许多认知任务至关重要,例如制定决策和指导后续行动(Goldman-Rakic,1992; Wickelgren,2001)。工作记忆的缺乏与许多病理状况有关,包括精神分裂症,注意缺陷多动障碍,衰老和压力(Birnbaum等,2004; Goldman-Rakic,1992; Goldman-Rakic和Selemon,1997)。因此,重要的是要了解工作记忆的神经基础。在执行工作记忆任务的过程中,前额叶皮层(PFC)中的锥体神经元能够在信息提示和适当的行为反应之间的延迟时间内保持持续的放电(Goldman-Rakic,1995)。因此,刺激特有的持续性神经活动被认为是在短时延内保持记忆的神经基质(Major and Tank,2004)。一旦在神经元或神经回路内触发了持久性活动,刺激终止后就可以保持其活动性。假设了三种持续活动的通用(非互斥)机制:循环网络活动(Compte等,2000; Wang,2001),短期突触可塑性(Mongillo等,2008)和固有的生物物理细胞特性。几项研究证明了固有的生物物理细胞特性在持续活动中的作用(Egorov等,2002; Egorov等,2006; Fransen等,2006)。在没有突触混响的情况下,这种射击行为与胆碱能毒蕈碱受体激活和磷脂酶C(PLC)信号传导有关。两个基本问题是:(1)在单细胞水平上持续放电产生的机理是什么? (2)内在持久性激发在工作记忆中起什么作用?药理研究表明,持续活性依赖于Ca2 +激活的非选择性阳离子(CAN)电流(ICAN)的活性(Egorov等,2002; Egorov等,2006)。然而,大脑中构成CAN通道的分子尚未得到很好的研究,CAN通道对工作记忆的重要性尚不明确。我试图确定分子机制,以将阈下输入转换为PFC第5层锥体神经元的固有持续神经放电。 。我假设CAN通道负责介导PFC第5层神经元中持续神经活动的内在特性。在毒蕈碱受体激活期间,动作电位的爆发将导致Ca2 +大量涌入。 CAN通道将由于细胞间Ca2 +的增加而被激活,并促进缓慢的去极化作用(sADP),即阈下输入和阈上持续发射之间的过渡状态。如果sADP足够强,它将触发随后的尖峰,导致电压相关的Ca2 +通道和Ca2 +流入量进一步打开,从而进一步打开CAN通道。因此,ICAN将通过正反馈回路进行维护,从而产生持续的活动。我将电生理学,药理学,遗传学和行为分析相结合,以解决CAN通道和持续活动在工作记忆中的潜在作用。首先,我确认在毒蕈碱激动剂卡巴胆碱的存在下,短暂的动作电位爆发会触发显着的sADP。和这些神经元的持续活动。其次,我确认此sA​​DP和持续放电需要激活PLC信号级联和细胞内钙信号传导。第三,我获得了直接的证据,即瞬时受体电位褪黑素5通道(TRPM5)被认为在非神经细胞中起CAN通道的作用,对sADP和第5层神经元的持续活性做出了重要贡献。重要的是,Trpm5-/-小鼠在延迟非匹配样本迷宫(DNMTS)任务(小鼠模型中的工作记忆任务)中显示出缺陷。此外,在Trpm5-/-小鼠中使用病毒介导的递送系统,TRPM5的PFC特异性表达可部分挽救工作记忆任务中的缺陷,表明mPFC中的TRPM5对于执行这些任务非常重要。最后,我发现TRPM5的PFC特异性表达部分挽救了Trpm5-/-小鼠的电生理缺陷。通过识别有助于工作记忆的离子通道,这项工作为发现用于治疗工作记忆缺陷的新药物提供了可能。

著录项

  • 作者

    Lei, Ya-Ting.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号