首页> 外文学位 >Electrically tunable micromirrors and microcavities.
【24h】

Electrically tunable micromirrors and microcavities.

机译:电可调微镜和微腔。

获取原文
获取原文并翻译 | 示例

摘要

Precise control of micromirror shape is critical in many optical microsystems. The optical performance of micromirrors is seriously degraded by undesired mirror deformation and thermal expansion-induced deformation becomes a major effect in micromirrors as the mirror diameter exceeds 100mum.; In this project, we demonstrate that one can use the mechanical properties of multilayer structures to create mirrors with stable curvature across temperature. We demonstrate the fabrication of such thermally invariant mirrors using dielectric coatings. Micromirrors are demonstrated that maintain their design curvature to within lambda/60 for lambda = 633nm across an operating range from 21°C to 58°C.; We also demonstrate micromirrors with current-controlled curvature. The working principle is that resistive heating changes the temperature of the micromirrors and thermal expansion induces a controlled curvature whose magnitude is determined by coating design. For example, for wide focal-length tuning, the radius of curvature of a gold-coated mirror was tuned from 2.5 to 8.2mm. For fine focal-length tuning, the radius of curvature of a dielectric-coated (SiO2/Y2O3 lambda/4 pairs) mirror was tuned from -0.68 to -0.64mm. These results should be readily extendable to mirror flattening or real-time adaptive shape control.; The performance of optical micro-cavities is limited by spectral degradation resulting from thermal deformation and fabrication imperfections. In this project, we study the spatial mode properties of micromirror optical cavities with respect to commonly seen aberrations. A simple current-based method is used to control the configurations of micro-cavities that are compatible with electrostatic spectral tuning and small array architectures. The shapes of the micromirrors are changed using Joule heating with thermal expansion deformation. Significant differences in mirror tilt, curvature, and astigmatism are measured, but the tilt has by far the biggest impact on cavity finesse and resolution. We demonstrate that unwanted higher order spatial modes can be suppressed electrically and an amplitude reduction for the higher order modes of over 60% has been obtained with a tuning current of 5.5mA. A fundamental mode finesse of approximately 60 is maintained throughout tuning. These tunable cavities have great potential in applications using cavity arrays or requiring dynamic mode control.
机译:在许多光学微系统中,精确控制微镜形状至关重要。微镜的光学性能由于不希望的镜变形而严重降低,并且当镜直径超过100μm时,热膨胀引起的变形成为微镜的主要作用。在这个项目中,我们证明了可以利用多层结构的机械特性来创建在整个温度范围内具有稳定曲率的反射镜。我们演示了使用介电涂层的这种热不变镜的制造。经证实,微镜在21°C至58°C的工作范围内,对于λ= 633nm,其设计曲率保持在λ/ 60内。我们还演示了具有电流控制曲率的微镜。工作原理是电阻加热会改变微镜的温度,而热膨胀会引起受控的曲率,其曲率由涂层设计决定。例如,对于宽焦距调整,镀金镜的曲率半径从2.5mm调整到8.2mm。为了进行精细的焦距微调,将电介质涂层(SiO2 / Y2O3λ/ 4对)的曲率半径从-0.68调整到-0.64mm。这些结果应易于扩展到镜面展平或实时自适应形状控制。光学微腔的性能受到热变形和制造缺陷导致的光谱退化的限制。在这个项目中,我们针对常见的像差研究了微镜光学腔的空间模式特性。一种简单的基于电流的方法用于控制与静电频谱调谐和小型阵列架构兼容的微腔的配置。使用具有热膨胀变形的焦耳加热来改变微镜的形状。测量了镜面倾斜度,曲率和像散的显着差异,但倾斜度迄今为止对腔体的精细度和分辨率影响最大。我们证明,不需要的高阶空间模可以被电抑制,并且在5.5mA的调谐电流下,高阶模的幅度减小超过60%。在整个调谐过程中,基本模式精度保持在大约60。这些可调腔在使用腔阵列或需要动态模式控制的应用中具有巨大潜力。

著录项

  • 作者

    Liu, Wei.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 86 p.
  • 总页数 86
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号