首页> 外文学位 >Epitaxial growth dynamics in gallium arsenide.
【24h】

Epitaxial growth dynamics in gallium arsenide.

机译:砷化镓的外延生长动力学。

获取原文
获取原文并翻译 | 示例

摘要

The problem of a complete theory describing the far-from-equilibrium statistical mechanics of epitaxial crystal growth remains unsolved. Besides its academic importance, this problem is also interesting from the point of view of device manufacturing. In order to improve on the quality and performance of lateral nanostructures at the lengthscales required by today's technology, a better understanding of the physical mechanisms at play during epitaxial growth and their influence on the evolution of the large-scale morphology is required. In this thesis, we present a study of the morphological evolution of GaAs (001) during molecular beam epitaxy by experimental investigation, theoretical considerations and computational modeling. Experimental observations show that initially rough substrates smooth during growth and annealing towards a steady-state interface roughness, as dictated by kinetic roughening theory. This smoothing indicates that there is no need for a destabilizing step-edge barrier in this material system. In fact, generic surface growth models display a much better agreement with experiments when a weak, negative barrier is used. We also observe that surface features grow laterally, as well as vertically during epitaxy. A growth equation that models smoothing combined with lateral growth is the nonlinear, stochastic Kardar-Parisi-Zhang (KPZ) equation. Simulation fits match the experimentally observed surface morphologies quite well, but we argue that this agreement is coincidental and possibly a result of limited dynamic range in our experimental measurements. In light of these findings, we proceed by developing a coupled growth equations (CGE) model that describes the full morphological evolution of both flat and patterned starting surfaces. The resulting fundamental model consists of two coupled, spatially dependent rate equations that describe the interaction between diffusing adatoms and the surface through physical processes such as adatom diffusion, deposition, and incorporation and detachment at step edges. In the low slope, small amplitude limit, the CGE model reduces to a nonlinear growth equation similar to the KPZ equation. From this, the apparent applicability of the KPZ equation to surface shape evolution is explained. The CGE model is based on fundamental physical processes, and can therefore explain the underlying physics, as well as describe macroscopic pattern evolution during growth.
机译:描述外延晶体生长的远非平衡统计力学的完整理论问题仍然没有解决。除了其学术重要性之外,从设备制造的角度来看,这个问题也很有趣。为了在当今技术所要求的长度尺度上改善横向纳米结构的质量和性能,需要更好地了解外延生长过程中起作用的物理机理及其对大规模形态演变的影响。本文通过实验研究,理论考虑和计算模型,对分子束外延过程中GaAs(001)的形貌演化进行了研究。实验观察表明,最初的粗糙基板在生长和退火过程中会朝着稳态界面粗糙度方向平滑,这由动力学粗糙化理论决定。这种平滑表示在该材料系统中不需要破坏稳定的台阶边缘屏障。实际上,当使用弱的负势垒时,通用的表面生长模型与实验显示出更好的一致性。我们还观察到表面特征在外延过程中横向和纵向均会增长。非线性,随机的Kardar-Parisi-Zhang(KPZ)方程是模拟平滑和横向生长的增长方程。模拟拟合非常符合实验观察到的表面形态,但是我们认为这种一致性是偶然的,并且可能是实验测量中动态范围有限的结果。根据这些发现,我们通过开发耦合生长方程(CGE)模型来进行描述,该模型描述了平坦和带图案的起始表面的完整形态演变。所得的基本模型由两个耦合的,空间相关的速率方程组成,这些方程描述了扩散吸附的原子与表面之间通过物理过程(例如,吸附原子的扩散,沉积以及台阶边缘处的结合和分离)之间的相互作用。在低斜率,小幅度限制下,CGE模型简化为类似于KPZ方程的非线性增长方程。由此,说明了KPZ方程在表面形状演变方面的表观适用性。 CGE模型基于基本的物理过程,因此可以解释潜在的物理原理,并描述生长过程中的宏观模式演变。

著录项

  • 作者

    Ballestad, Anders.;

  • 作者单位

    The University of British Columbia (Canada).;

  • 授予单位 The University of British Columbia (Canada).;
  • 学科 Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:41:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号