首页> 外文学位 >Morphogenesis and Growth Driven by Selection of Dynamical Properties
【24h】

Morphogenesis and Growth Driven by Selection of Dynamical Properties

机译:动力学特性选择驱动形态发生和生长

获取原文
获取原文并翻译 | 示例

摘要

Organisms are understood to be complex adaptive systems that evolved to thrive in hostile environments. Though widely studied, the phenomena of organism development and growth, and their relationship to organism dynamics is not well understood. Indeed, the large number of components, their interconnectivity, and complex system interactions all obscure our ability to see, describe, and understand the functioning of biological organisms.;Here we take a synthetic and computational approach to the problem, abstracting the organism as a cellular automaton. Such systems are discrete digital models of real-world environments, making them more accessible and easier to study then their physical world counterparts. In such simplified synthetic models, we find that the structure of the cellular network greatly impacts the dynamics of the organism as a whole. In the physical world, for example, the network property wherein some cells depend on phosphorus produces the cyclical boom-bust dynamics of algae on the surface of a pond. Using techniques of synthetic biology and cellular automata, such local properties can be abstractly specified, and the long-term, system-wide, and dynamical consequences of localized assumptions can be carefully explored.;This thesis explores the potential impacts of Darwinian selection of dynamical properties on long term cellular differentiation and organism growth. The focus here is on the relationship between organism homogeneity (or heterogeneity) and the dynamical properties of robustness, adaptivity, and chromatic symmetry. This dissertation applies an experimental approach to test the following three hypotheses: (1) cellular differentiation increases the expected robustness in an organism's dynamics, (2) cellular differentiation leads to more uniform adaptivity as the organism grows, and (3) for organisms with symmetry, growth by segment elongation is more likely than growth by segment reduplication. To explore these hypotheses, we address several obstacles in the experimental study of dynamical systems, including computational time limits and big data.
机译:有机体被理解为复杂的适应性系统,在敌对环境中发展迅速。尽管已进行了广泛研究,但对生物发展和生长的现象及其与生物动力学之间的关系的了解还很少。确实,大量的组件,它们的互连性以及复杂的系统相互作用都使我们看不见,描述和理解生物体功能的能力。在这里,我们对问题采取综合和计算的方法,将生物体抽象为细胞自动机。这样的系统是现实世界环境中的离散数字模型,因此与实际环境相比,它们更易于访问且更易于研究。在这种简化的合成模型中,我们发现细胞网络的结构极大地影响了整个生物体的动力学。例如,在物理世界中,某些细胞依赖磷的网络特性会在池塘表面产生藻类的周期性繁荣-萧条动力学。使用合成生物学和细胞自动机技术,可以抽象地指定此类局部性质,并可以仔细探索局部假设的长期,系统范围和动力学后果。;本论文探讨了达尔文选择动力学的潜在影响长期细胞分化和生物生长的特性。这里的重点是生物同质性(或异质性)与鲁棒性,适应性和色对称性的动力学特性之间的关系。本文采用实验方法来检验以下三个假设:(1)细胞分化增加了生物体动力学的预期鲁棒性;(2)细胞分化导致生物体生长时适应性更均匀;(3)对称生物体,按段延伸的增长比按段重复的增长更有可能。为了探索这些假设,我们解决了动力系统实验研究中的几个障碍,包括计算时间限制和大数据。

著录项

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号