首页> 外文学位 >Two-phase flow over flooded micro-pillar structures with engineered wettability
【24h】

Two-phase flow over flooded micro-pillar structures with engineered wettability

机译:工程润湿性的淹没微柱结构两相流

获取原文
获取原文并翻译 | 示例

摘要

Flooding caused by excessive droplet feeding on heat dissipation areas periodically occurs for droplet-based thermal management. The conventional highly wettable texture of target surfaces, which is designed for thin film evaporation, has negligible effect on improving thermal performance during flooding. This work examines a combination of micro-pillar structures and engineered wettability that aims to improve the liquid-vapor phase change intensity and heat dissipation rate during flooding. Numerical simulation has been made to investigate the thermal and dynamic impact of the proposed combination structure on boiling and evaporation. A transient 3-D volume-of-fluid (VOF) model has been developed to analyze behaviors of bubble growth, coalescence, and departure processes. Parameters including volumetric liquid-vapor mass transfer rate, heat source temperature and heat transfer coefficient are examined. It has been demonstrated that surface wettability gradient in the pillar height direction can effectively facilitate the bubble departure and removal within the pillar forest. Thus smaller bubble size and a lower thermal resistance in the fluid domain can be achieved. The structured surface with higher pillars and denser pillar array is desirable for heat dissipation. The factor of pillar height has more impact on cooling enhancement than pillar array density when the solid-liquid interface area was kept the same. For wettability texture on the micro-pillar structure, the resulting heat transfer performance is determined by a trade-off between the bubble departure improvement within the pillar forest and the bubble pinning at hydrophobic pillar tops.
机译:对于基于液滴的热管理,会定期发生因过多的液滴进给散热区域而导致的溢流。目标表面的传统高度可湿性质地(设计用于薄膜蒸发)在注水过程中对改善热性能的影响可忽略不计。这项工作研究了微柱结构和工程润湿性的结合,旨在提高注水过程中的液体-蒸汽相变强度和散热率。已经进行了数值模拟以研究所提出的组合结构对沸腾和蒸发的热和动态影响。已经开发了瞬态3-D流体体积(VOF)模型来分析气泡生长,聚结和离开过程的行为。检查了包括液体-蒸汽的体积传质速率,热源温度和传热系数在内的参数。已经证明,在支柱高度方向上的表面润湿性梯度可以有效地促进气泡在支柱林中的离开和去除。因此,可以在流体域中实现较小的气泡尺寸和较低的热阻。具有更高的支柱和更密集的支柱阵列的结构化表面对于散热是理想的。当固液界面面积保持不变时,立柱高度的因素比立柱阵列密度对冷却增强的影响更大。对于微柱结构上的润湿性纹理,最终的传热性能由柱林中气泡离开的改善与疏水柱顶部钉扎之间的折衷决定。

著录项

  • 作者

    Zhou, Zhou.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2013
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号