首页> 外文学位 >Engineering aperiodic spiral order for photonic-plasmonic device applications.
【24h】

Engineering aperiodic spiral order for photonic-plasmonic device applications.

机译:用于光子等离子体设备应用的工程非周期性螺旋阶。

获取原文
获取原文并翻译 | 示例

摘要

Deterministic arrays of metal (i.e., Au) nanoparticles and dielectric nanopillars (i.e., Si and SiN) arranged in aperiodic spiral geometries (Vogel's spirals) are proposed as a novel platform for engineering enhanced photonic-plasmonic coupling and increased light-matter interaction over broad frequency and angular spectra for planar optical devices. Vogel's spirals lack both translational and orientational symmetry in real space, while displaying continuous circular symmetry (i.e., rotational symmetry of infinite order) in reciprocal Fourier space. The novel regime of "circular multiple light scattering" in finite-size deterministic structures will be investigated. The distinctive geometrical structure of Vogel spirals will be studied by a multifractal analysis, Fourier-Bessel decomposition, and Delaunay tessellation methods, leading to spiral structure optimization for novel localized optical states with broadband fluctuations in their photonic mode density. Experimentally, a number of designed passive and active spiral structures will be fabricated and characterized using dark-field optical spectroscopy, ellipsometry, and Fourier space imaging. Polarization-insensitive planar omnidirectional diffraction will be demonstrated and engineered over a large and controllable range of frequencies. Device applications to enhanced LEDs, novel lasers, and thin-film solar cells with enhanced absorption will be specifically targeted. Additionally, using Vogel spirals we investigate the direct (i.e. free space) generation of optical vortices, with well-defined and controllable values of orbital angular momentum, paving the way to the engineering and control of novel types of phase discontinuities (i.e., phase dislocation loops) in compact, chip-scale optical devices. Finally, we report on the design, modeling, and experimental demonstration of array-enhanced nanoantennas for polarization-controlled multispectral nanofocusing, nanoantennas for resonant near-field optical concentration of radiation to individual nanowires, and aperiodic double resonance surface enhanced Raman scattering substrates.
机译:提出了以非周期性螺旋几何形状(Vogel螺旋)排列的金属(即Au)纳米颗粒和电介质纳米柱(即Si和SiN)的确定性阵列,作为一种工程化的新型平台,可用于增强光子-等离子体耦合并在更宽的范围内增加光-物质相互作用平面光学设备的频率和角度光谱。沃格尔的螺旋在实际空间中既缺乏平移对称性也没有取向对称性,而在互易傅立叶空间中却显示出连续的圆对称性(即无限次旋转对称性)。将研究有限大小确定性结构中“圆形多重光散射”的新颖机制。 Vogel螺旋的独特几何结构将通过多重分形分析,Fourier-Bessel分解和Delaunay细分方法进行研究,从而为螺旋形结构的优化设计新的局域光学态,其光子模式密度具有宽带波动。实验上,将使用暗场光谱,椭圆偏振和傅立叶空间成像技术制造并设计许多设计的被动和主动螺旋结构。偏振不敏感的平面全向衍射将在较大且可控制的频率范围内进行演示和设计。器件的应用将特别针对增强型LED,新型激光器和吸收性增强的薄膜太阳能电池。此外,使用Vogel螺旋,我们研究了直接产生的(即自由空间)光学涡旋,其轨道角动量的值明确且可控,从而为工程和控制新型类型的相位不连续性(即相位错位)铺平了道路回路)在紧凑的芯片级光学设备中。最后,我们报告了用于偏振控制多光谱纳米聚焦的阵列增强纳米天线,用于辐射到各个纳米线的共振近场光学集中的纳米天线以及非周期性双共振表面增强拉曼散射基板的设计,建模和实验演示。

著录项

  • 作者

    Trevino, Jacob Timothy.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Nanoscience.;Engineering Materials Science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 286 p.
  • 总页数 286
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号