首页> 外文学位 >Design, Fabrication and Optimization of Microfluidic Chambers for Neurobiology Research.
【24h】

Design, Fabrication and Optimization of Microfluidic Chambers for Neurobiology Research.

机译:用于神经生物学研究的微流腔的设计,制作和优化。

获取原文
获取原文并翻译 | 示例

摘要

In vitro culture systems have improved our understanding of human neurobiology and disease. For example, in vitro platforms such as organotypic brain slices and dissociated cultured neurons represent powerful screening systems for dissection of molecular pathways underlying dysfunction of neuronal activity. Similarly, tissue slice co-cultures that permit the evaluation of inter-neuronal function across brain regions have been well established. Also, studies with primary neuronal cell cultures indicate that disruption of intracellular axonal transport of molecules critically affects the survival and function of neurons.;Despite significant progress in medicine, biology and engineering; there is still a widespread need for precisely defined culture systems to facilitate a better understanding of neuronal cell function and screen new therapeutic drugs or methods to treat neurodegenerative diseases. In this work we propose that an enhanced understanding of specific pathways underlying neuronal activity, in both normal and disease states, demands the use of researchspecific experimental tools such as microfluidic culture chambers optimized for a precise manipulation and observation of the local tissue or cellular microenvironments of neuronal processes..;By using a multidisciplinary approach to create a synergy of cell biology, engineering, and neuroscience, we tailored micro/nano-scale design strategies to control extrinsic aspects of the local neural tissue/cell microenvironment. Specifically, we developed perfusion-based microfluidic devices that allow both precise control of the tissue microenvironment and localized chemical stimulation of organotypic brain slices for either acute or long term experiments. Additionally, we developed a suite of cell-based compartmentalized microfluidic chips to isolate different neuronal subcellular compartments (i.e., either somatodendritic or axonal domains) into separate and precisely defined biochemical microenvironments. The devices allow independent genetic or pharmacological manipulation in each specific neuronal compartment, extended long-term fluidic isolation between different biochemical microenvironments, on-chip immunocytochemistry, and live cell imaging of subcellular localization and axonal transport of neuronal proteins. Importantly, these tools are aimed at potential drug testing and medium to high throughput screening. It is hoped that the technology developed in this work will aid investigations and discoveries related to neuronal functions and diseases.
机译:体外培养系统改善了我们对人类神经生物学和疾病的理解。例如,诸如器官型脑切片和离体的培养神经元之类的体外平台代表了强大的筛选系统,可用于剖析潜在的神经元功能异常的分子途径。类似地,已经建立了允许评估跨大脑区域的神经元间功能的组织切片共培养物。同样,对原代神经元细胞培养的研究表明,分子内细胞内轴突运输的破坏严重影响了神经元的存活和功能。仍然存在对精确定义的培养系统的广泛需求,以促进对神经元细胞功能的更好理解并筛选用于治疗神经退行性疾病的新治疗药物或方法。在这项工作中,我们提出,要增强对正常状态和疾病状态下神经元活动的特定途径的理解,需要使用研究专用的实验工具,例如微流控培养室,其经过优化可精确地操纵和观察其局部组织或细胞微环境。神经元过程..;通过使用多学科方法创建细胞生物学,工程学和神经科学的协同作用,我们定制了微/纳米级设计策略来控制局部神经组织/细胞微环境的外在方面。具体来说,我们开发了基于灌注的微流控设备,可以对组织微环境进行精确控制,也可以对急性或长期实验的器官型脑切片进行局部化学刺激。此外,我们开发了一套基于细胞的分区微流控芯片套件,可将不同的神经元亚细胞分区(即躯体树突状或轴突域)隔离到单独且精确定义的生化微环境中。该设备允许在每个特定的神经元区室进行独立的遗传或药理操作,在不同的生化微环境之间进行长期的长期流体隔离,芯片上的免疫细胞化学,以及亚细胞定位和神经元蛋白的轴突运输的活细胞成像。重要的是,这些工具旨在进行潜在的药物测试和中高通量筛选。希望这项工作中开发的技术将有助于与神经元功能和疾病有关的研究和发现。

著录项

  • 作者

    Caicedo, Hector Hugo.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Engineering Biomedical.;Biology Cell.;Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号