首页> 外文学位 >GaN Nanowire Devices: Fabrication and Characterization.
【24h】

GaN Nanowire Devices: Fabrication and Characterization.

机译:GaN纳米线器件:制造和表征。

获取原文
获取原文并翻译 | 示例

摘要

The development of microelectronics in the last 25 years has been characterized by an exponential increase of the bit density in integrated circuits (ICs) with time. Scaling solid-state devices improves cost, performance, and power; as such, it is of particular interest for companies, who gain a market advantage with the latest technology. As a result, the microelectronics industry has driven transistor feature size scaling from 10 &mgr;m to ~30 nm during the past 40 years. This trend has persisted for 40 years due to optimization, new processing techniques, device structures, and materials. But when noting processor speeds from the 1970's to 2009 and then again in 2010, the implication would be that the trend has ceased.;To address the challenge of shrinking the integrated circuit (IC), current research is centered on identifying new materials and devices that can supplement and/or potentially supplant it. Bottom-up methods tailor nanoscale building blocks---atoms, molecules, quantum dots, and nanowires (NWs)---to be used to overcome these limitations. The Group IIIA nitrides (InN, AlN, and GaN) possess appealing properties such as a direct band gap spanning the whole solar spectrum, high saturation velocity, and high breakdown electric field. As a result nanostructures and nanodevices made from GaN and related nitrides are suitable candidates for efficient nanoscale UV/ visible light emitters, detectors, and gas sensors. To produce devices with such small structures new fabrication methods must be implemented. Devices composed of GaN nanowires were fabricated using photolithography and electron beam lithography. The IV characteristics of these devices were noted under different illuminations and the current tripled from 4.8*10-7 A to 1.59*10 -6 A under UV light which persisted for at least 5hrs.
机译:在过去的25年中,微电子学的发展以集成电路(IC)的位密度随时间呈指数增长为特征。扩展固态设备可提高成本,性能和功耗;因此,对于使用最新技术获得市场优势的公司来说,这尤其有意义。结果,在过去的40年中,微电子工业推动了晶体管特征尺寸从10 µm扩展到〜30 nm。由于优化,新的加工技术,设备结构和材料的缘故,这种趋势持续了40年。但是,当注意到处理器速度从1970年代到2009年再到2010年再次出现时,这意味着趋势已经停止;为了解决缩小集成电路(IC)的挑战,当前的研究集中在确定新材料和器件上可以补充和/或潜在取代它。自下而上的方法可定制纳米级的构建基块-原子,分子,量子点和纳米线(NWs)-用于克服这些局限性。 IIIA族氮化物(InN,AlN和GaN)具有引人注目的特性,例如跨越整个太阳光谱的直接带隙,高饱和速度和高击穿电场。结果,由GaN和相关的氮化物制成的纳米结构和纳米器件是有效的纳米级UV /可见光发射器,检测器和气体传感器的合适候选者。为了生产具有这种小结构的器件,必须实现新的制造方法。使用光刻和电子束光刻技术制造了由GaN纳米线组成的器件。在不同的照明条件下,这些器件的IV特性得到了记录,在紫外光下,电流持续至少5小时,电流从4.8 * 10-7 A增至1.59 * 10 -6 A两倍。

著录项

  • 作者

    Scott, Reum.;

  • 作者单位

    Howard University.;

  • 授予单位 Howard University.;
  • 学科 Engineering Materials Science.;Nanoscience.
  • 学位 M.S.
  • 年度 2013
  • 页码 44 p.
  • 总页数 44
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号