首页> 外文学位 >Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion.
【24h】

Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion.

机译:泰坦大气,星际介质和燃烧中多环芳烃和含氮多环芳族化合物的形成。

获取原文
获取原文并翻译 | 示例

摘要

Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards aromatic compounds in cold environments, such as on Titan or in the interstellar medium.
机译:使用理论量子化学计算研究了导致形成(取代)萘和氮杂萘的几种不同机理。结果,已经提出了一系列新颖的合成途径来制备多环芳烃(PAH)和含氮多环芳族化合物(N-PAC)。在地球上,这些芳族化合物源自不完全燃烧,并释放到我们的环境中,在那里它们被称为主要污染物,通常具有致癌特性。人们认为,在土星卫星土卫六的大气中,这些PAH和N-PAC在有机雾形成中起着关键作用,并且是生物相关分子的化学前体。通过使用从头算G3(MP2,CC)/ B3LYP / 6-311G **方法进行理论计算,以有效探测与PAH和N-PAC形成有关的势能面(PES)。在构建PES之后,使用Rice-Ramsperger-Kassel-Markus(RRKM)理论来评估所有单分子速率常数在单碰撞条件下随碰撞能量的变化。然后通过解决各种产品浓度的现象速率表达来评估支化比率。发现PAH和N-PAC形成的最可行途径是乙炔基(C2H)或氰基(CN)自由基对不饱和烃分子的初始攻击导致形成中间体而该中间体无法有效地失去氢原子。直到发生环环化,氢消除才产生封闭的壳产物。通过消除最初消除氢原子的可能性,避免了阻止PAH或N-PAC形成的最具竞争性的方法之一,并允许进行PAH或N-PAC的形成。得出的结论是,当尝试探索在寒冷环境中(例如在土卫六或星际介质中)向芳族化合物的任何其他潜在途径时,应考虑这些因素。

著录项

  • 作者

    Landera, Alexander.;

  • 作者单位

    Florida International University.;

  • 授予单位 Florida International University.;
  • 学科 Chemistry Physical.;Planetology.;Atmospheric Chemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号