首页> 外文学位 >Stochastic optimization of sustainable industrial symbiosis based hybrid generation bioethanol supply chains.
【24h】

Stochastic optimization of sustainable industrial symbiosis based hybrid generation bioethanol supply chains.

机译:基于可持续工业共生的混合发电生物乙醇供应链的随机优化。

获取原文
获取原文并翻译 | 示例

摘要

Bioethanol is becoming increasingly attractive for the reasons of energy security, diversity, and sustainability. As a result, the use of bioethanol for transportation purposes has been encouraged extensively. However, designing an effective bioethanol supply chain that is both sustainable and robust is still questionable. Therefore, this research focuses on designing a bioethanol supply chain that is: 1) sustainable in improving economic, environmental, social, and energy efficiency aspects; and 2) robust to uncertainties such as bioethanol price, bioethanol demand and biomass yield. In this research, we first propose a decision framework to design an optimal bioenergy-based industrial symbiosis (BBIS) under certain constraints. In BBIS, traditionally separate plants collocate in order to efficiently utilize resources, reduce wastes and increase profits for the entire BBIS and each player in the BBIS. The decision framework combines linear programming models and large scale mixed integer linear programming model to determine: 1) best possible combination of plants to form the BBIS, and 2) the optimal multi-product network of various materials in the BBIS, such that the bioethanol production cost is reduced. Secondly, a sustainable hybrid generation bioethanol supply chain (HGBSC), which consists of 1st generation and 2nd generation bioethanol production, is designed to improve economic benefits under environmental and social restrictions. In this study, an optimal HGBSC is designed where the new 2nd generation bioethanol supply chain is integrated with the existing 1st generation bioethanol supply chain under uncertainties such as bioethanol price, bioethanol demand and biomass yield. A stochastic mixed integer linear programming (SMILP) model is developed to design the optimal configuration of HGBSC under different sustainability standards. Finally, a sustainable industrial symbiosis based hybrid generation bioethanol supply chain (ISHGBSC) is designed that incorporates various industrial symbiosis (IS) configurations into HGBSC to improve economic, environmental, social, and energy efficiency aspects of sustainability under bioethanol price, bioethanol demand and biomass yield uncertainties. A SMILP model is proposed to design the optimal ISHGBSC and Sampling Average Approximation algorithm is used as the solution technology. Case studies of North Dakota are used as an application. The results provide managerial insights about the benefits of BBIS configurations within HGBSC.
机译:由于能源安全,多样性和可持续性的原因,生物乙醇正变得越来越有吸引力。结果,广泛地鼓励将生物乙醇用于运输目的。但是,设计一个既可持续又健壮的有效生物乙醇供应链仍然存在疑问。因此,本研究着重于设计一种生物乙醇供应链,该供应链是:1)在改善经济,环境,社会和能源效率方面具有可持续性; 2)对不确定性如生物乙醇价格,生物乙醇需求和生物质产量具有较强的鲁棒性。在这项研究中,我们首先提出一个决策框架,以在一定约束条件下设计基于生物能源的最佳工业共生(BBIS)。在BBIS中,传统上分开的工厂并置在一起,以便有效利用资源,减少浪费并增加整个BBIS和BBIS中每个参与者的利润。该决策框架结合了线性规划模型和大规模混合整数线性规划模型,以确定:1)最佳的工厂组合以形成BBIS,以及2)BBIS中各种材料的最佳多产品网络,例如生物乙醇生产成本降低。其次,由第一代和第二代生物乙醇生产组成的可持续杂交一代生物乙醇供应链(HGBSC)旨在在环境和社会限制下提高经济效益。在这项研究中,设计了一个最佳的HGBSC,其中在不确定性(例如生物乙醇价格,生物乙醇需求和生物质产量)的情况下,将新的第二代生物乙醇供应链与现有的第一代生物乙醇供应链整合在一起。建立了随机混合整数线性规划(SMILP)模型,以设计在不同可持续性标准下HGBSC的最佳配置。最后,设计了基于可持续工业共生的混合发电生物乙醇供应链(ISHGBSC),将各种工业共生(IS)配置纳入HGBSC,以改善在生物乙醇价格,生物乙醇需求和生物量下可持续性的经济,环境,社会和能源效率方面产量不确定性。提出了一个SMILP模型来设计最优ISHGBSC,并采用采样平均近似算法作为求解技术。应用北达科他州的案例研究。结果为HGBSC中BBIS配置的好处提供了管理上的见解。

著录项

  • 作者

    Gonela, Vinay.;

  • 作者单位

    North Dakota State University.;

  • 授予单位 North Dakota State University.;
  • 学科 Engineering Industrial.;Alternative Energy.;Biology Ecology.;Sustainability.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号