首页> 外文学位 >Mechanisms of Activity-Dependent Plasticity After Spinal Cord Injury and the Role of Proprioceptive Stimulation.
【24h】

Mechanisms of Activity-Dependent Plasticity After Spinal Cord Injury and the Role of Proprioceptive Stimulation.

机译:脊髓损伤后活动依赖性可塑性的机制以及本体感受性刺激的作用。

获取原文
获取原文并翻译 | 示例

摘要

Recovery following spinal cord injury (SO) is attributable to the innate plasticity of the nervous system and retention of spinal circuits involved in locomotion and other behaviors. Repetitive patterned activity in the form of exercise improves this recovery by increasing local neurotrophic factor levels and axon sprouting in the spinal cord and by minimizing possible adverse effects of spinal cord plasticity. To better understand the underlying features of activity-dependent plasticity, we analyzed molecular changes in the spinal cord resulting from a passive exercise regimen. In doing so, we paid special attention to the role of the sensory system in modulating the molecular response and reflex activity of neurons below the level of injury.;First, we examined changes in mRNA expression following injury and exercise in cells of the motor system and proprioceptive sensory system, with emphasis on genes associated with the injury response and with neurotrophic factors because of their ability to modify neural circuits. Exercise increased the expression of genes associated with survival and reduced those associated with apoptosis. Exercise increased expression of the neurotrophic factors, but only in cells of the motor system.;To determine if sensory input was necessary for reflex normalization seen with exercise after SCI, we used pyridoxine (toxic to large, sensory neurons) to block proprioceptive sensory input. Hyperactive reflexes associated with SCI were not normalized in exercised animals treated with pyridoxine, demonstrating a critical role of proprioceptive stimulation in modulation of the H-reflex. Further, immunohistochemical analysis of synaptic elements below the level of the injury indicated no change with exercise after pyridoxine administration.;Next, we examined the role of sensory stimulation in molecular changes observed with exercise. We analyzed gene expression in motoneurons, after SCI and exercise, in animals lacking either proprioceptive sensory stimulation or all sensory stimulation caudal to the injury. Exercise failed to increase expression of neurotrophic factors in motoneurons in either state of sensory loss. Overall these results demonstrate possible molecular mechanisms and the critical role of proprioceptive input in activity-dependent plasticity.
机译:脊髓损伤(SO)后的恢复可归因于神经系统的固有可塑性以及与运动和其他行为有关的脊髓回路的保留。运动形式的重复模式活动通过增加局部神经营养因子水平和脊髓中的轴突发芽,并通过最小化脊髓可塑性的不利影响来改善这种恢复。为了更好地了解活动依赖性可塑性的基本特征,我们分析了被动运动疗法导致的脊髓分子变化。在此过程中,我们特别注意感觉系统在调节低于损伤水平的神经元的分子反应和反射活性中的作用。首先,我们检查了运动系统细胞损伤和运动后mRNA表达的变化。和本体感觉系统,着重于与损伤反应和神经营养因子相关的基因,因为它们具有改变神经回路的能力。运动增加了与生存有关的基因的表达,而减少了与凋亡有关的基因的表达。锻炼增加了神经营养因子的表达,但仅在运动系统的细胞中表达。;为了确定在SCI运动后见觉反射是否正常,对于感觉反射输入是否必要,我们使用吡ido醇(对大型感觉神经元有毒)来阻止本体感觉感觉输入。在用吡ido醇治疗的运动动物中,与SCI相关的亢进反射未能正常化,这证明了本体感受刺激在调节H反射中的关键作用。此外,在吡below醇给药后,低于损伤水平的突触元件的免疫组织化学分析表明运动后无变化。接下来,我们研究了感觉刺激在运动中观察到的分子变化中的作用。我们分析了SCI和运动后运动神经元中缺乏本体感觉感觉刺激或尾部所有尾部所有感觉刺激的动物中的基因表达。在两种感觉丧失状态下,运动均不能增加运动神经元中神经营养因子的表达。总的来说,这些结果证明了可能的分子机制和本体感受输入在活动依赖性可塑性中的关键作用。

著录项

  • 作者

    Keeler, Benjamin Emerson.;

  • 作者单位

    Drexel University College of Medicine.;

  • 授予单位 Drexel University College of Medicine.;
  • 学科 Neurosciences.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号