首页> 外文学位 >Synthesis and development of ordered, phase-separated, room-temperature ionic liquid-based AB and ABC block copolymers for gas separation applications.
【24h】

Synthesis and development of ordered, phase-separated, room-temperature ionic liquid-based AB and ABC block copolymers for gas separation applications.

机译:用于气体分离应用的有序,相分离的室温离子液体型AB和ABC嵌段共聚物的合成和开发。

获取原文
获取原文并翻译 | 示例

摘要

CO2 capture process development is an economically and environmentally important challenge, as concerns over greenhouse gas emissions continue to receive worldwide attention. Many applications require the separation of CO 2 from other light gases such as N2, CH4, and H2 and a number of technologies have been developed to perform such separations. While current membrane technology offers an economical, easy to operate and scale-up solution, polymeric membranes cannot withstand high temperatures and aggressive chemical environments, and they often exhibit an unfavorable tradeoff between permeability and selectivity. Room-temperature ionic-liquids (RTILs) are very attractive as next-generation CO2-selective separation media and their development into polymerized membranes combat these challenges. Furthermore, polymers that can self-assemble into nanostructured, phase-separated morphologies (e.g., block copolymers, BCPs) have a direct effect on gas transport as materials morphology can influence molecular diffusion and membrane transport performance.;In this thesis, nanophase-separated, RTIL-based AB and ABC di- and tri-BCPs were prepared via the sequential, living ring-opening metathesis polymerization (ROMP) of an IL-based monomer and one or more mutually immiscible co-monomers. This novel type of ion-containing BCP system forms various ordered nanostructures in the melt state via primary and secondary structure control. Monomer design and control of block composition, sequence, and overall polymer lengths were found to directly affect the ordered polymer assembly. Supported, composite membranes of these new BCPs were successfully fabricated, and the effect of BCP composition and nanostructure on CO2/light gas transport properties was studied. These nanostructured IL-based BCPs represent innovative polymer architectures and show great potential CO2/light gas membrane separation applications.
机译:随着对温室气体排放的关注继续受到全世界的关注,二氧化碳捕集工艺的发展在经济和环境上都是一项重要的挑战。许多应用需要将CO 2与其他轻质气体(例如N2,CH4和H2)分离,并且已经开发出许多技术来进行这种分离。尽管当前的膜技术提供了一种经济,易于操作和按比例放大的解决方案,但是聚合物膜无法承受高温和腐蚀性化学环境,并且它们通常在渗透性和选择性之间表现出不利的折衷。室温离子液体(RTIL)非常有吸引力,因为新一代的CO2选择性分离介质及其向聚合膜中的发展克服了这些挑战。此外,可以自组装成纳米结构,相分离形态的聚合物(例如嵌段共聚物,BCP)对气体传输具有直接影响,因为材料形态可以影响分子扩散和膜传输性能。 ,通过基于IL的单体和一种或多种互不互溶的共聚单体的顺序,活性开环易位聚合(ROMP),制备了基于RTIL的AB和ABC二和三BCP。这种新型的含离子BCP系统通过一级和二级结构控制,在熔融态下形成各种有序的纳米结构。发现单体设计和嵌段组成,序列和总聚合物长度的控制直接影响有序的聚合物组装。成功制备了这些新型BCP的支撑复合膜,并研究了BCP组成和纳米结构对CO2 /轻质气体传输性能的影响。这些基于IL的纳米结构BCP代表了创新的聚合物架构,并显示出巨大的CO2 /轻质气膜分离应用潜力。

著录项

  • 作者

    Wiesenauer, Erin F.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Chemistry General.;Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 268 p.
  • 总页数 268
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号