首页> 外文学位 >Growth factor effects on single chondrocyte biomechanics and gene expression
【24h】

Growth factor effects on single chondrocyte biomechanics and gene expression

机译:生长因子对单个软骨细胞生物力学和基因表达的影响

获取原文
获取原文并翻译 | 示例

摘要

Studying chondrocyte responses to mechanical forces and how growth factors modify these responses allows for exploration of the underlying principles of cartilage physiology and disease. The work described in this thesis aims to understand single chondrocyte response to mechanical stimulation and how soluble growth factors can modulate this response. This knowledge is valuable for the formulation of successful cartilage tissue repair and replacement strategies, as well as etiopathogenesis of and treatments for the disease osteoarthritis. The first portion of this thesis established unconfined compression as a method for creep testing single adherent chondrocytes. Fitting of three continuum biomechanics models showed that a continuum viscolelastic model best described the creep behavior of single chondrocytes. Unconfined creep compression was next used to test single superficial and middle/deep zone chondrocytes. The effects of growth factor treatment (TGF-beta1, IGF-I, and TGF-beta1 + IGF-I) and seeding time (3 and 18 hr) were also tested. Creep testing demonstrated that all growth factor treatments stiffened the cytoskeleton of single cells, and staining showed increased F-actin due to growth factors. Techniques were developed to isolate specific adherent single chondrocytes and assay their gene expression with real-time RT-PCR. These techniques were used to detect significant differences in the gene expression of single zonal chondrocytes exposed to IGF-I. Finally, single cells were statically compressed with or without TGF-beta1 and IGF-I and their resulting gene expression was measured. Static compression elicited catabolic gene expression in control single cells. TGF-beta1 and IGF-I provided mechanoprotection and differentially prevented this catabolic response. Cytoimmunohistochemistry of single chondrocytes fixed in compression demonstrated that nearly all axial strain experienced by the cell is experienced by the nucleus. Also, cells compressed at higher levels of force had increasingly deformed nuclei with larger spaces in the chromatin. These results suggest that transcription is modified directly by nuclear strains through force-mediated changes of the chromatin. This work provides the first evidence of mechanical forces modifying gene expression and provides a starting point for future studies where precise thresholds of mechanical stimulation required to elicit desired metabolic changes in single cells will be determined.
机译:研究软骨细胞对机械力的反应以及生长因子如何改变这些反应,可以探索软骨生理和疾病的基本原理。本文所描述的工作旨在了解单软骨细胞对机械刺激的反应以及可溶性生长因子如何调节这种反应。该知识对于成功的软骨组织修复和置换策略的制定,以及骨关节炎疾病的病因和治疗方法均具有宝贵的价值。本论文的第一部分建立了无边压缩作为蠕变测试单个粘附软骨细胞的方法。对三个连续体生物力学模型的拟合表明,连续体粘弹性模型最能描述单个软骨细胞的蠕变行为。接下来,无限制蠕变压缩用于测试单个浅表和中/深区软骨细胞。还测试了生长因子处理(TGF-β1,IGF-I和TGF-β1+ IGF-I)和接种时间(3和18小时)的影响。蠕变测试表明,所有生长因子处理均能增强单细胞的细胞骨架,染色显示由于生长因子而导致的F-肌动蛋白升高。开发了分离特定粘附的单个软骨细胞并通过实时RT-PCR测定其基因表达的技术。这些技术被用于检测暴露于IGF-1的单个带状软骨细胞的基因表达的显着差异。最后,在有或没有TGF-beta1和IGF-I的情况下,对单个细胞进行静态压缩,并测量其产生的基因表达。静态压缩引起对照单细胞中分解代谢基因的表达。 TGF-beta1和IGF-I提供了机械保护作用,并差异地阻止了这种分解代谢反应。压缩固定的单个软骨细胞的细胞免疫组织化学表明,细胞几乎经历了所有轴向应变,细胞核经历了该过程。同样,以较高的力量压缩的细胞使核染色质的空间越来越大,而核的变形也越来越大。这些结果表明,转录是由核菌株通过力介导的染色质变化直接修饰的。这项工作提供了机械力改变基因表达的第一个证据,并为将来的研究提供了起点,在将来的研究中,将确定引发单个细胞所需代谢变化所需的精确机械刺激阈值。

著录项

  • 作者

    Leipzig, Nic Davis.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Biomedical engineering.;Cellular biology.;Molecular biology.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号