首页> 外文学位 >Developing the Analysis Methodology and Platform for Behaviorally Induced System Optimal Traffic Management.
【24h】

Developing the Analysis Methodology and Platform for Behaviorally Induced System Optimal Traffic Management.

机译:开发行为诱导系统最佳交通管理的分析方法和平台。

获取原文
获取原文并翻译 | 示例

摘要

Traffic congestion has been imposing a tremendous burden on society as a whole. For decades, the most widely applied solution has been building more roads to better accommodate traffic demand, which turns out to be of limited effect. Active Traffic and Demand Management (ATDM) is getting more attention recently and is considered here, as it leverages market-ready technologies and innovative operational approaches to manage traffic congestion within the existing infrastructure.;The existence of most current Advanced Traveler Information Systems (ATIS) offer the capability to provide pre-trip and/or en route real time information, allowing travelers to quickly assess and react to unfolding traffic conditions. The basic design concept is to present generic information to drivers, leaving drivers to react to the information their own way. This "passive" way of managing traffic by providing generic traffic information has difficulty in predicting outcome and may even incur adverse effect, such as overreaction (aka herding effects). Furthermore, other questions remain on how to utilize the real-time information better and guide the traffic flow more effectively towards a better solution, and most current research fails to take the traveler's external cost into consideration.;Motivated by those concerns, in this research, a behaviorally induced system optimal model is presented, aimed at further improving the system-level traffic condition towards System Optimal through incremental routing, as well as establishing the analysis methodology and evaluation framework to calibrate quantitatively the behavior change and the system benefits. In this process, the traffic models involved are carefully calibrated, first using a two-stage calibration model which is capable of matching not only the traffic counts, but also the time dependent speed profiles of the calibrated links. To the best of our knowledge, this research is the first with a methodology to incorporate the use of field observed data to estimate the Origin-Destination (OD) matrices departure profile. Also proposed in this dissertation is a Constrained K Shortest Paths algorithm (CKSP) that addresses route overlap and travel time deviation issues. This proposed algorithm can generate K Shortest Paths between two given nodes and provide sound route options to the drivers in order to assist their route choice decision process. Thirdly, a behaviorally induced system optimal model includes the development of a marginal cost calculation algorithm, a time-dependent shortest path search algorithm, and schedule delay as well as optimal path finding models, is present to improve the traffic flow from an initial traffic condition which could be User Equilibrium (UE) or any other non-UE or non-System-Optimal (SO) condition towards System Optimal. Case studies are conducted for each individual research and show a rather promising result.;The goal of establishing this framework is to better capture and evaluate the effects of behaviorally induced system optimal traffic management strategies on the overall system performance. To realize this goal, the three research models are integrated in order to constitute a comprehensive platform that is not only capable of effectively guiding the traffic flow improvement towards System Optimal, but also capable of accurately evaluating the system benefit from the macroscopic perspective and quantitatively analyzing the behavior changes microscopically. The comprehensive case study on the traffic network in Tucson, Arizona, has been conducted using DynusT (Dynamic Urban Simulation for Transportation) Dynamic Traffic Assignment (DTA) simulation software; the outcome of this study shows that our proposed modeling framework is promising for improving network traffic condition towards System Optimal, resulting in a vast amount of economic saving. (Abstract shortened by UMI.).
机译:交通拥堵一直给整个社会带来沉重负担。几十年来,应用最广泛的解决方案是修建更多的道路,以更好地适应交通需求,但效果有限。主动交通和需求管理(ATDM)最近得到了越来越多的关注,并在这里得到了考虑,因为它利用了市场就绪技术和创新的运营方法来管理现有基础设施中的交通拥堵。;存在最新的高级旅客信息系统(ATIS) )提供了提供出行前和/或途中实时信息的功能,使旅行者能够快速评估和应对不断发展的交通状况。基本设计概念是向驾驶员提供一般信息,而驾驶员则以自己的方式对信息做出反应。通过提供通用交通信息来管理交通的这种“被动”方式很难预测结果,甚至可能会产生不利影响,例如反应过度(又称羊群效应)。此外,关于如何更好地利用实时信息以及如何更有效地引导交通流量以寻求更好的解决方案的其他问题仍然存在,并且大多数当前的研究未能将旅行者的外部成本考虑在内;提出了一种行为诱导的系统最优模型,旨在通过增量路由进一步将系统级流量条件朝系统最优方向发展,并建立分析方法和评估框架,以定量地校准行为变化和系统收益。在此过程中,首先使用两阶段校准模型对所涉及的流量模型进行仔细校准,该模型不仅能够匹配流量计数,而且能够匹配已校准链路的速度相关速度曲线。据我们所知,这项研究是第一个结合使用实地观测数据来估计起点-终点(OD)矩阵离场剖面的方法。本文还提出了一种约束K最短路径算法(CKSP),该算法解决了路线重叠和行进时间偏差问题。该算法可以在两个给定节点之间生成K条最短路径,并为驾驶员提供合理的路线选择,以协助他们进行路线选择决策过程。第三,行为诱导的系统最优模型包括边际成本计算算法,时间相关的最短路径搜索算法,调度延迟以及最优路径发现模型的开发,以改善初始交通状况下的交通流量。可能是用户均衡(UE)或朝向系统最佳状态的任何其他非UE或非系统最佳(SO)条件。对每个单独的研究进行案例研究,并显示出相当可观的结果。建立此框架的目的是更好地捕获和评估行为诱导的系统最佳流量管理策略对整体系统性能的影响。为了实现这一目标,将三个研究模型进行集成以构成一个综合平台,该平台不仅可以有效地指导交通流量向系统优化方向发展,而且还可以从宏观角度准确评估系统收益并进行定量分析。行为发生微观变化。使用DynusT(动态交通运输城市仿真)动态交通分配(DTA)仿真软件对亚利桑那州图森市的交通网络进行了全面的案例研究;这项研究的结果表明,我们提出的建模框架有望改善网络流量,使系统达到最佳状态,从而节省了大量的经济。 (摘要由UMI缩短。)。

著录项

  • 作者

    Hu, Xianbiao.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号