首页> 外文学位 >Dynamical electron -proton correlation in the nuclear -electronic orbital framework.
【24h】

Dynamical electron -proton correlation in the nuclear -electronic orbital framework.

机译:核电子轨道框架中的动态电子-质子相关性。

获取原文
获取原文并翻译 | 示例

摘要

The nuclear-electronic orbital (NEO) approach is a method for including nuclear quantum effects directly into electronic structure calculations. In the NEO approach, specified nuclei are treated quantum mechanically on the same level as the electrons, and mixed nuclear-electronic wavefunctions are calculated using molecular orbital methods. The influence of dynamical electron-proton correlation within the NEO framework is the focus of this dissertation.;A formulation of nuclear-electronic orbital many-body perturbation theory (NEO-MP2) for treating electron-proton correlation is presented. Second-order Rayleigh-Schrodinger perturbation theory based on the NEO-HF (Hartree-Fock) reference Hamiltonian is used to construct corrections for electron-electron and electron-proton correlation.;Fundamental issues associated with the application of the NEO approach to hydrogen transfer systems are addressed. Within the NEO framework, the transferring hydrogen atom can be represented by two basis function centers to allow delocalization of the proton vibrational wavefunction. The NEO approach is applied to the [He-H-He]+ and [He-H-He]++ model systems. Analyses of basis center optimization with the NEO-MP2 method demonstrates that electron-proton correlation impacts the delocalized nature of nuclear wavefunctions. Technical issues pertaining to flexibility of the basis set to describe both single and double well proton potential energy surfaces, linear dependency of the hydrogen basis functions, multiple minima in the basis function center optimization, convergence of the number of hydrogen basis function centers, and basis set superposition error are also presented. The accuracy of the NEO approach is tested by comparison to grid calculations for these model systems.;The structural impact of nuclear quantum effects is investigated for a set of bihalides, [XHX]-, X = F, Cl, Br, and hydrogen fluoride clusters, (HF)2--8. Structures are calculated with the vibrational self-consistent-field (VSCF) method, the second-order vibrational perturbation theory method (VPT2), path integral Car-Parrinello molecular dynamics (PICPMD), and the nuclear-electronic orbital (NEO) approach. In the VSCF, VPT2, and PICPMD methods, the vibrationally-averaged geometries are calculated for the Born-Oppenheimer electronic potential energy surface. Electron-electron and electron-proton dynamical correlation effects are included in the NEO approach using NEO-MP2. The nuclear quantum effects are found to alter the distances between the heavy atoms by 0.02--0.05 A, which is of similar magnitude as electron correlation effects. For the bihalides, inclusion of the nuclear quantum effects with the NEO-MP2 or the VSCF method increases the X--X distance. The bihalide X--X distances are similar for both methods and are consistent with two-dimensional grid calculations and experimental values, thereby validating the use of the computationally efficient NEO-MP2 method for these types of systems.;For the hydrogen fluoride clusters, inclusion of nuclear quantum effects decreases the F--F distance with the NEO-MP2 method. The nuclear quantum effects included with the PICPMD and VPT2 methods result in increased F--F distances for the (HF)2--4 clusters and decreased F--F distances for the (HF)5--6 clusters. The VPT2 F--F distances for the hydrogen fluoride dimer and the deuterated form are consistent with the experimentally determined values. The NEO-MP2 F--F distance is in excellent agreement with the distance obtained experimentally for a model that removes the large amplitude bending motions. The NEO-MP2 method does not include the large amplitude bending motions properly because it does not recover enough dynamical electron-proton correlation.;A method that includes explicit electron-proton correlation directly into the nuclear-electronic orbital self-consistent-field framework is presented. This nuclear-electronic orbital explicitly correlated Hartree-Fock (NEO-XCHF) scheme is formulated using Gaussian basis functions for the electrons and the quantum nuclei in conjunction with Gaussian-type geminal functions. The description of the nuclear wavefunction is significantly improved by the inclusion of explicit electron-proton correlation. The NEO-XCHF method leads to hydrogen vibrational stretch frequencies that are in excellent agreement with those calculated from grid-based methods.;The results presented indicate that dynamical electron-proton correlation significantly impacts the qualitative characteristics of nuclear wavefunctions. Moreover, dynamical electron-proton correlation is essential for treating systems containing low frequency, large amplitude atomic motions such as hydrogen bonded clusters. Methods based on orbital expansions for recovering dynamical electron-proton correlation suffer from slow convergence reminiscent of that found for precise treatments of electron-electron correlation. Therefore, an explicit treatment of electron-proton correlation is required.
机译:核电子轨道(NEO)方法是一种将核量子效应直接纳入电子结构计算的方法。在NEO方法中,将特定的原子核在与电子相同的水平上进行量子力学处理,并使用分子轨道方法计算混合的核电子波函数。本论文的研究重点是动态电子质子相关性的影响。提出了一种处理电子质子相关性的核电子轨道多体微扰理论(NEO-MP2)。基于NEO-HF(Hartree-Fock)参考哈密顿量的二阶Rayleigh-Schrodinger摄动理论用于构造电子-电子和电子-质子相关性的校正。;与NEO方法应用于氢转移相关的基本问题系统已解决。在NEO框架内,转移的氢原子可以由两个基本函数中心表示,以允许质子振动波函数的离域。 NEO方法应用于[He-H-He] +和[He-H-He] ++模型系统。 NEO-MP2方法对基中心优化的分析表明,电子-质子相关性会影响核波函数的离域性质。与描述单井和双井质子势能面的基础集的灵活性,氢基础函数的线性相关性,基础函数中心优化中的多个最小值,氢基础函数中心的数量收敛以及基础的灵活性有关的技术问题还提出了集合叠加误差。通过与这些模型系统的网格计算进行比较,测试了NEO方法的准确性。;研究了一组[XHX]-,X = F,Cl,Br和氟化氢的双卤化物的核量子效应的结构影响。 (HF)2--8。使用振动自洽场(VSCF)方法,二阶振动摄动理论方法(VPT2),路径积分Car-Parrinello分子动力学(PICPMD)和核电子轨道(NEO)方法计算结构。在VSCF,VPT2和PICPMD方法中,计算了Born-Oppenheimer电子势能面的振动平均几何形状。使用NEO-MP2的NEO方法包括电子-电子和电子-质子动力学相关效应。发现核量子效应使重原子之间的距离改变0.02--0.05 A,其大小与电子相关效应相似。对于双卤化物,NEO-MP2或VSCF方法包含核量子效应会增加X-X距离。两种方法的二卤化物X–X距离相似,并且与二维网格计算和实验值一致,从而验证了对此类系统使用计算效率高的NEO-MP2方法的适用性;对于氟化氢簇, NEO-MP2方法包含核量子效应会减小F-F距离。 PICPMD和VPT2方法包含的核量子效应导致(HF)2--4簇的F-F距离增加,而(HF)5--6簇的F-F距离减小。氟化氢二聚体和氘代形式的VPT2 F-F距离与实验确定的值一致。 NEO-MP2 F--F距离与消除大幅度弯曲运动的模型实验获得的距离非常吻合。 NEO-MP2方法由于不能恢复足够的动态电子-质子相关性而没有适当地包含大振幅弯曲运动。;一种将显式电子-质子相关性直接包含到核电子轨道自洽场框架中的方法是提出了。这种核电子轨道显式相关的Hartree-Fock(NEO-XCHF)方案是结合电子和量子核的高斯基函数以及高斯型双键函数制定的。通过包含显式电子-质子相关性,显着改善了对核波函数的描述。 NEO-XCHF方法产生的氢振动拉伸频率与基于网格方法计算出的氢振动拉伸频率非常吻合。结果表明,动态电子-质子相关性显着影响核波函数的定性特征。此外,动态电子-质子相关性对于处理包含低频大振幅原子运动(例如氢键团簇)的系统至关重要。用于恢复动态电子-质子相关性的基于轨道扩展的方法,其收敛速度较慢,使人想起了精确处理电子-电子相关性的方法。因此,需要对电子-质子相关性进行显式处理。

著录项

  • 作者

    Swalina, Chet.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号