首页> 外文学位 >Flapping and fixed wing aerodynamics of low Reynolds number flight vehicles.
【24h】

Flapping and fixed wing aerodynamics of low Reynolds number flight vehicles.

机译:低雷诺数飞行器的拍打和固定翼空气动力学。

获取原文
获取原文并翻译 | 示例

摘要

Lately, micro air vehicles (MAVs), with a maximum dimension of 15 cm and nominal flight speed around 10m/s, have attracted interest from scientific and engineering communities due to their potential to perform desirable flight missions and exhibit unconventional aerodynamics, control, and structural characteristics, compared to larger flight vehicles. Since MAVs operate at a Reynolds number of 105 or lower, the lift-to-drag ratio is noticeably lower than the larger manned flight vehicles. The light weight and low flight speed cause MAVs to be sensitive to wind gusts. The MAV's small overall dimensions result in low aspect ratio wings with strong wing tip vortices that further complicate the aerodynamics of such vehicles. In this work, two vehicle concepts are considered, namely, fixed wings with flexible structure aimed at passive shape control, and flapping wings aimed at enhancing aerodynamic performance using unsteady flow fields. A finite volume, pressure-based Navier-Stokes solver along with moving grid algorithms is employed to simulate the flow field. The coupled fluid-structural dynamics of the flexible wing is treated using a hyperelastic finite element structural model, the above-mentioned fluid solver via the moving grid technique, and the geometric conservation law. Three dimensional aerodynamics around a low aspect ratio wing for both rigid and flexible structures and fluid-structure interactions for flexible structures have been investigated. In the Reynolds numbers range of 7x10 4 to 9x104, the flexible wing exhibits self-initiated vibrations even in steady free-stream, and is found to have a similar performance to the identical rigid wing for modest angles of attack. For flapping wings, efforts are made to improve our understanding of the unsteady fluid physics related to the lift generation mechanism at low Reynolds numbers (75 to 1,700). Alternative moving grid algorithms, capable of handling the large movements of the boundaries (characteristic of flapping wing kinematics) are tested. Two main hovering modes are investigated and compared with experimental and other computational efforts. The analysis shows that, while delayed-stall and rapid pitch-up mechanisms are responsible for most of the lift generation at a Reynolds numbers of O(100) and stroke amplitudes of O(1 chord), other mechanisms, including wake-capturing, are identified to contribute to the overall lift/drag force generation. The effect of the Reynolds number on hovering airfoil aerodynamics is also probed.
机译:最近,最大尺寸为15厘米,标称飞行速度为10m / s的微型飞行器(MAV)吸引了科学和工程界的兴趣,因为它们有潜力执行理想的飞行任务并表现出非常规的空气动力学,控制和结构特点相比,较大的飞行器。由于MAV的雷诺数为105或更低,因此升阻比明显低于大型载人飞行器。轻量级和低飞行速度导致MAV对阵风敏感。 MAV的整体尺寸较小,导致长宽比低的机翼具有强劲的机翼尖端涡流,这进一步使此类车辆的空气动力学更加复杂。在这项工作中,考虑了两个车辆概念,即具有用于被动形状控制的柔性结构的固定翼和旨在利用非恒定流场来增强空气动力性能的襟翼。有限体积的基于压力的Navier-Stokes求解器与移动网格算法一起用于模拟流场。使用超弹性有限元结构模型,上述的通过移动网格技术的流体求解器以及几何守恒律来处理柔性机翼的耦合流体-结构动力学。研究了刚性和柔性结构在低长宽比机翼周围的三维空气动力学特性以及柔性结构的流固耦合。在7x10 4到9x104的雷诺数范围内,柔性机翼即使在稳定的自由流中也表现出自发振动,并且在中等攻角下具有与相同刚性机翼相似的性能。对于拍打的机翼,我们努力提高了我们对低雷诺数(75至1,700)下与升力产生机理有关的非稳态流体物理学的理解。测试了能够处理边界大运动(襟翼运动学特性)的替代移动网格算法。研究了两种主要的悬停模式,并将它们与实验和其他计算工作进行了比较。分析表明,虽然延迟失速和快速俯仰机制是雷诺数为O(100)和冲程幅度为O(1和弦)的大部分升力产生的原因,但其他机制(包括尾部捕捉)确定有助于整体提升/拖动力的产生。雷诺数对徘徊的翼型空气动力学的影响也进行了探讨。

著录项

  • 作者

    Viieru, Dragos.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号