首页> 外文学位 >Water-surface chlorophyll detection by remote sensing and vertical structure of chlorophyll analysis in Lake Superior: Water-surface chlorophyll as an estimate of water-column-integrated chlorophyll.
【24h】

Water-surface chlorophyll detection by remote sensing and vertical structure of chlorophyll analysis in Lake Superior: Water-surface chlorophyll as an estimate of water-column-integrated chlorophyll.

机译:通过遥感和苏必利尔湖的叶绿素分析垂直结构检测水面叶绿素:以水面叶绿素作为水柱整合叶绿素的估计。

获取原文
获取原文并翻译 | 示例

摘要

This research, consisting of three parts, investigates the application of remote sensing to both the detection of water-surface chlorophyll a concentration ([Chl-a]) and the estimation of water-column-integrated [Chl-a] in Lake Superior. In Chapter 1, we describe four methods for determining remote sensing reflectance ( Rrs), using a combination of above-surface, below-surface, and polarization measurements of radiance, in western Lake Superior during the summer of 2003. The work allows us to examine in detail the effects of the unwanted surface reflectance from a rough water surface. The results of Chapter 1 provide consistent values of Rrs and indicate that the four methods are practical and helpful in determining Rrs reliably. In Chapter 2, we evaluate two standard empirical [Chl-a] retrieval algorithms: one for Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and one for Moderate Resolution Imaging Spectroradiometer (MODIS). We compare the results from satellite data with the corresponding in-situ data collected in western Lake Superior in the summer of 2004. The linear correlations between the empirically-derived [Chl-a] and the in-situ measurements are poor (R2 around 0.1) for both algorithms. We find that more detailed information on particulate backscattering is required to test and derive a regionally optimized semi-analytical algorithm. To overcome the problems associated with retrieving water-surface [Chl-a] from the empirical and the semi-analytical algorithms, we apply artificial neural networks (ANNs). The results appear to provide better estimates of [Chl-a] than the empirical algorithms. In Chapter 3, we discuss the difference between the [Chl- a] profiles collected in offshore and inshore areas of western and southeastern Lake Superior and explore the possibility of applying a Gaussian distribution to the modeling for the offshore [Chl-a] profiles. We establish statistical relationships between the water-surface [Chl- a] and its vertical distribution characteristics: the deep chlorophyll maximum (DCM), the DCM depth (zmax), and the depth-integrated [Chl-a]. ANNs are used to relate the [Chl-a], the temperature, and the vertical attenuation coefficient (K d) near water surface to the depth-integrated [Chl- a]. Using these two kinds of inverse models, we determine the depth-integrated [Chl-a] distribution for western Lake Superior.
机译:这项研究由三部分组成,研究了遥感技术在苏必利尔湖水表面叶绿素a浓度([Chl-a])的检测和水柱整合[Chl-a]估算中的应用。在第1章中,我们描述了在2003年夏季西部苏必利尔湖地区使用表面上,下表面和辐射的偏振测量的四种确定遥感反射率(Rrs)的方法。这项工作使我们能够详细检查粗糙水面产生的有害表面反射的影响。第1章的结果提供了一致的Rrs值,并表明这四种方法实用且有助于可靠地确定Rrs。在第2章中,我们评估了两种标准的经验[Chl-a]检索算法:一种用于海景宽视场传感器(SeaWiFS),另一种用于中分辨率成像光谱仪(MODIS)。我们将卫星数据的结果与2004年夏季在苏必利尔湖西部采集的相应原位数据进行比较。根据经验得出的[Chl-a]与原位测量值之间的线性相关性很差(R2约为0.1 )的两种算法。我们发现需要更多有关颗粒反向散射的信息来测试和推导区域优化的半分析算法。为了克服与经验和半解析算法检索水面[Chl-a]相关的问题,我们应用了人工神经网络(ANN)。结果似乎比经验算法提供了更好的[Chl-a]估计。在第3章中,我们讨论了在苏必利尔湖西部和东南部的近海和近海区域采集的[Chl-a]剖面之间的差异,并探讨了将高斯分布应用于近海[Chl-a]剖面建模的可能性。我们在水表面[Chl-a]及其垂直分布特征之间建立统计关系:深叶绿素最大值(DCM),DCM深度(zmax)和深度积分[Chl-a]。人工神经网络用于将[Chl-a],温度和水面附近的垂直衰减系数(K d)与深度积分[Chl-a]相关联。使用这两种反演模型,我们确定了苏必利尔湖西部的深度积分[Chl-a]分布。

著录项

  • 作者

    Yan, Yuhu.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Environmental Sciences.; Remote Sensing.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境科学基础理论;遥感技术;
  • 关键词

  • 入库时间 2022-08-17 11:40:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号