首页> 外文学位 >Integration of Advanced Optics for Trapped Ion Quantum Information Processing.
【24h】

Integration of Advanced Optics for Trapped Ion Quantum Information Processing.

机译:集成先进光学,用于捕获离子量子信息处理。

获取原文
获取原文并翻译 | 示例

摘要

Trapped ion systems are the leading candidate for quantum information processing because many of the critical components have already been demonstrated. Scaling trapped ion systems to large numbers of ions is currently believed possible, but much work remains to prove it. Microfabricated surface ion traps are increasing in popularity for their ease of mass production and their ability to manipulate individual ions and interact arbitrary pairs of ions. Even with the advent of scalable ion traps, detection of an individual ion trapped in a high vacuum poses a challenge. The internal state of the ion chosen for a quantum bit can be measured via exposure to a probe beam that causes one state to scatter light (a "bright" state), but not the other state (a "dark" state). In free space, a single ion acts like a point source that emits in all directions; a standard two inch lens system can only collect about 2% of the light emitted by the ion. Poor light collection results in a high error rate and slow determination of the internal state of the ion. Fast, high fidelity state detection is necessary for quantum error correction and loophole-free Bell experiments at short (less than 100microm) distances, and high efficiency collection is necessary to rapidly interconnect separate quantum computers. We demonstrate state detection fidelities of 99%, 99.856(8)% and 99.915(7) % which correspond to detection times of 10.5, 28.1 and 99.8 us, respectively.
机译:陷阱离子系统是量子信息处理的主要候选方法,因为已经证明了许多关键组件。目前认为将捕获的离子系统缩放为大量离子是可行的,但仍有大量工作要做。微制造的表面离子阱由于易于批量生产以及能够操纵单个离子并与任意对离子相互作用而越来越受欢迎。即使出现了可伸缩的离子阱,但要检测高真空下捕获的单个离子仍然是一个挑战。可以通过暴露于使一个状态散射光(“亮”状态)但不散射另一状态(“暗”状态)的探测束来测量为量子位选择的离子的内部状态。在自由空间中,单个离子的作用就像在所有方向上发射的点源一样。标准的2英寸透镜系统只能收集约2%的离子发射光。光收集不良会导致较高的错误率,并且无法确定离子的内部状态。快速,高保真状态检测对于短距离(小于100微米)的量子误差校正和无漏洞的Bell实验是必需的,而高效收集对于快速互连单独的量子计算机也是必需的。我们展示了99%,99.856(8)%和99.915(7)%的状态检测保真度,分别对应于10.5、28.1和99.8 us的检测时间。

著录项

  • 作者

    Noek, Rachel M.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering General.;Physics General.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号