首页> 外文学位 >Structural insights into capping and decappingmRNA.
【24h】

Structural insights into capping and decappingmRNA.

机译:封闭和脱盖mRNA的结构见解。

获取原文
获取原文并翻译 | 示例

摘要

The 5' end of mRNA has a unique cap structure, m7GpppN (an N7-methyl guanosine linked by a 5'-5' triphosphate bridge to the first nucleoside of the transcript). The cap plays essential roles in the life cycle of mRNA, including two fundamental biological processes in cells, mRNA synthesis and mRNA decay. X-ray crystallography and biochemistry have been used to study the enzymetic mechanisms of mRNA cap formation and hydrolysis.; RNA triphosphatase, guanylyltransferase and guanine-N7 methyltransferase are required sequentially during the initial stage of mRNA transcription elongation to catalyze the formation of mRNA caps. A triphosphatase and guanylyltransferase complex (Cet1-Ceg1) from Saccharomyces cerevisiae represents a type of capping complex that is only utilized by protozoa, eukaryotic viruses and fungi. Our crystallographic work has revealed that the Cet1-Ceg1 complex is a tetramer, composed of 2 Cet1 and 2 Ceg1 molecules. The crystal structure of the Cet1-Ceg1 complex will be a foundation that will lead to the discovery of anti-protozoal, anti-viral and anti-fungal drugs, and will open a view to co-transcriptional mRNA processing. As the formation of the mRNA cap is a critical step for mRNA synthesis and maturation, the hydrolysis of the mRNA cap is an indispensable step for mRNA decay. Dcp1-associated Dcp2, an enzyme containing a Nudix (nucleoside diphosphate linked moiety X&barbelow;) domain, binds mRNA body and hydrolyzes the mRNA cap, releasing m7GDP Cap hydrolysis by Dcp2 exposes the 5' end of mRNA to 5'-3' exoribonuclease activities. Alternatively, the scavenger decapping enzyme, DcpS, exclusively binds m7GpppN and catalyzes a metal-independent decapping reaction that releases m7GMP, only after the exosome degrades mRNA body from the 3' end. DcpS is a member of the HIT (histidine t&barbelow;riad) protein family. The first crystal structure of DcpS from human in complex with cap analogs has revealed an asymmetric homodimer with two domains. The structural analysis has indicated that a dramatic conformational change is required for catalysis, and the substrate-length specificity is carried out by applying either a steric or an entropic mechanism.
机译:mRNA的5'端具有独特的帽结构m7GpppN(由5'-5'三磷酸桥连接至转录本第一个核苷的N7-甲基鸟苷)。帽在mRNA的生命周期中起着至关重要的作用,包括细胞中的两个基本生物学过程,即mRNA合成和mRNA衰变。 X射线晶体学和生物化学已用于研究mRNA帽形成和水解的酶机制。在mRNA转录延伸的初始阶段,需要顺序地需要RNA三磷酸酶,鸟嘌呤基转移酶和鸟嘌呤-N7甲基转移酶来催化mRNA帽的形成。来自酿酒酵母的三磷酸酶和鸟嘌呤基转移酶复合物(Cet1-Ceg1)代表一种加帽复合物,仅原生动物,真核病毒和真菌可利用。我们的晶体学研究表明,Cet1-Ceg1复合物是四聚体,由2个Cet1和2个Ceg1分子组成。 Cet1-Ceg1复合物的晶体结构将成为基础,将导致发现抗原生动物,抗病毒和抗真菌药物,并为共转录mRNA处理打开了视野。由于mRNA帽的形成是mRNA合成和成熟的关键步骤,因此mRNA帽的水解是mRNA衰变必不可少的步骤。与Dcp1相关的Dcp2,一种含有Nudix(核苷二磷酸连接部分X&barbelow;)域的酶,结合mRNA体并水解mRNA帽,通过Dcp2释放m7GDP Cap水解使mRNA的5'端暴露于5'-3'核糖核酸外切酶活性。或者,仅在外泌体从3'端降解mRNA体后,清除剂解封酶DcpS专门结合m7GpppN并催化释放m7GMP的金属非依赖性解封反应。 DcpS是HIT(组氨酸triabar)蛋白家族的成员。人与帽类似物复合的DcpS的第一个晶体结构揭示了具有两个结构域的不对称同二聚体。结构分析表明,催化需要巨大的构象变化,并且底物长度特异性是通过应用空间或熵机制来进行的。

著录项

  • 作者

    Gu, Meigang.;

  • 作者单位

    Weill Medical College of Cornell University.;

  • 授予单位 Weill Medical College of Cornell University.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号