首页> 外文学位 >Modeling the Impacts of Climate Change on Hydrology and Agricultural Pollutant Runoff in California's Central Valley.
【24h】

Modeling the Impacts of Climate Change on Hydrology and Agricultural Pollutant Runoff in California's Central Valley.

机译:模拟加利福尼亚州中央谷地气候变化对水文学和农业污染物径流的影响。

获取原文
获取原文并翻译 | 示例

摘要

Quantifying the hydrologic and agricultural pollutant runoff response to an increased atmospheric CO2 concentration and climate change is critical for proper management of water resources within agricultural systems. This research takes this challenge by simulating the effects of climate change on the hydrologic cycle and agricultural pollutant transport in the Central Valley of California using the Soil and Water Assessment Tool (SWAT) water quality model and the HYDRUS soil water transport model. Specifically, changes in hydrology (streamflow, surface runoff, groundwater recharge, evapotranspiration, and irrigation water use) and agricultural pollutant runoff (sediment, nitrate, phosphorus, chlorpyrifos, and diazinon) were assessed. For the first three studies, hydrological responses were modeled in the San Joaquin River watershed using variations of atmospheric CO2 (550 and 970 ppm), temperature (+1.1 and +6.4°C), and precipitation (0%, +/-10%, and +/-20%) based on Intergovernmental Panel on Climate Change projections. The fourth study used a calibration and an uncertainty analysis technique for the calibration of the Sacramento River watershed. This study confirmed that SWAT was able to capture the large amount of uncertainty within the Sacramento River watershed and successfully simulate streamflow, sediment, nitrate, chlorpyrifos and diazinon loads. The final study uses a novel stochastic climate change analysis technique to bracket the 95% confidence interval of potential climate changes. For all studies, increases in precipitation generally changed the hydrological cycle and agricultural runoff proportionally, where increases in precipitation resulted in increases in surface runoff and thus agricultural runoff and vice-versa. Also, for all studies, increasing temperature caused a temporal shift in plant growth patterns and redistributed evapotranspiration and irrigation water demand earlier in the year. This lead to an increase in streamflow during the summer months compared to the present-day climate due to decreased irrigation demand. Increasing CO2 concentration to 970 ppm and temperature by 6.4°C in the San Joaquin River watershed caused watershed-wide average evapotranspiration, averaged over 50 simulated years, to decrease by 37.5%, resulting in increases of water yield by 36.5% and stream flow by 23.5% compared to the present-day climate. Solely increasing CO2 concentration in the San Joaquin River watershed resulted in an increase in nitrate, phosphorus, and chlorpyrifos yield by 4.2, 7.8, and 6.4%, respectively, and a decrease in sediment and diazinon yield by 6.3 and 5.3%, respectively, in comparison to the presentday reference scenario. Only increasing temperature reduced yields of all agricultural runoff components. Elevating atmospheric CO 2 concentrations generally decreased groundwater recharge under almonds, alfalfa, and tomatoes in the San Joaquin Valley due to decreased evapotranspiration resulting in decreased irrigation water use. Increasing average daily temperature by 1.1 and 6.4°C and atmospheric CO2 concentration to 550 and 970 ppm led to a decrease in cumulative groundwater recharge for most scenarios. For the final study, 95% confidence interval (CI) results from stochastic climate change simulations indicate that streamflow (3% for the upper CI limit, 9.5% for the lower CI limit) and sediment runoff (20% for the upper CI limit, 26% for the lower CI limit) in the Sacramento River watershed is more likely to decrease under climate changes compared to present-day, while the increase and decrease for nitrate runoff was found to be equal (13% for the upper CI limit, 13% for the lower CI limit). For the San Joaquin River watershed, streamflow slightly decreased under climate change (27% for the upper CI limit, 28% for the lower CI limit), while sediment (73% for the upper CI limit, 49% for the lower CI limit) and nitrate (28% for the upper CI limit, 26% for the lower CI limit) increased compared to present-day climate. Comparisons of watershed sensitivities indicate that San Joaquin River watershed is more sensitive to climate changes than the Sacramento River watershed largely due to differences in land use and soil properties. This research improves the understanding between climate change and hydrology and agricultural pollutant runoff within the Central Valley of California. Theses climate change analyses may be used by water resource managers to evaluate the potential effects of climate change.
机译:量化对增加的大气CO2浓度和气候变化的水文和农业污染物径流响应对于正确管理农业系统内的水资源至关重要。这项研究通过使用土壤和水评估工具(SWAT)水质模型和HYDRUS土壤水迁移模型模拟气候变化对加利福尼亚中央谷地的水文循环和农业污染物迁移的影响来应对这一挑战。具体而言,评估了水文(流量,地表径流,地下水补给,蒸散量和灌溉用水)和农业污染物径流(沉积物,硝酸盐,磷,毒死rif和二嗪农)的变化。对于前三项研究,使用大气CO2(550和970 ppm),温度(+1.1和+ 6.4°C)和降水(0%,+ /-10%)的变化对圣华金河流域的水文响应进行建模。 ,以及+/- 20%)。第四项研究使用校准和不确定性分析技术对萨克拉曼多河流域进行校准。这项研究证实,特警队能够捕获萨克拉曼多河流域内的大量不确定性,并成功模拟了水流,沉积物,硝酸盐,毒死rif和二嗪农的负荷。最后的研究使用了一种新颖的随机气候变化分析技术,将潜在气候变化的95%置信区间括起来。对于所有研究,降水增加通常会按比例改变水文循环和农业径流,其中降水增加导致地表径流增加,进而导致农业径流增加,反之亦然。同样,对于所有研究,温度升高导致植物生长模式随时间变化,并在今年初重新分配了蒸散量和灌溉需水量。与当前的气候相比,由于灌溉需求的减少,导致夏季的水流量增加。圣华金河流域中的CO2浓度增加到970 ppm,温度升高6.4°C,导致流域范围内的平均蒸散量减少了37.5%,这是模拟的50年的平均水平,导致水量增加了36.5%,溪流增加了。与当今的气候相比,降低了23.5%。仅在圣华金河流域增加二氧化碳浓度,硝酸盐,磷和毒死rif的产量分别增加了4.2%,7.8%和6.4%,而沉积物和二嗪农的产量分别减少了6.3%和5.3%。与当前参考方案的比较。仅升高温度会降低所有农业径流成分的产量。大气CO 2浓度升高通常会减少圣华金河谷杏仁,苜蓿和西红柿下的地下水补给,这是由于蒸散量减少导致灌溉用水减少。在大多数情况下,日平均温度增加1.1和6.4°C,大气中的二氧化碳浓度增加到550和970 ppm,导致地下水补给量减少。对于最终研究,随机气候变化模拟得出的95%置信区间(CI)结果表明,流量(CI上限为3%,CI下限为9.5%)和沉积物径流(CI上限为20%,与今天相比,萨克拉曼多河流域的CI降低下限为26%)与今天相比更可能减少,而硝酸盐径流的增加和减少均相等(CI上限为13%,13 CI下限的百分比)。对于圣华金河流域,由于气候变化,水流量略有下降(CI上限为27%,CI下限为28%),而沉积物(CI上限为73%,CI下限为49%)与当今的气候相比,硝酸盐(CI上限为28%,CI下限为26%)增加了。流域敏感性的比较表明,圣华金河流域比萨克拉曼多河流域对气候变化更为敏感,这在很大程度上是由于土地利用和土壤特性的差异。这项研究提高了加利福尼亚中央山谷内气候变化与水文学与农业污染物径流之间的理解。水资源管理者可以使用这些气候变化分析来评估气候变化的潜在影响。

著录项

  • 作者

    Ficklin, Darren L.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Hydrology.;Water Resource Management.;Climate Change.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号