首页> 外文学位 >Numerical investigation of the mechanisms of local extinction using flame kernel-vortex interactions.
【24h】

Numerical investigation of the mechanisms of local extinction using flame kernel-vortex interactions.

机译:使用火焰核-涡旋相互作用的局部灭绝机制的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

The response of premixed flames to unsteady stretch is studied via kernel-vortex interactions. In this configuration a spark ignited kernel interacts with a vortex pair (in 2D) or a toroidal vortex (in 3D) of variable strength. Both detailed and simple chemistry approaches are explored. In the detailed chemistry effort a dilute Hydrogen-air mixture is used. The vortex causes significant distortion of the kernel topography. Two distinct regimes; "Breakthrough" and "Extinction" are observed. A continuous increase in flame area and volumetric reaction rate values are observed throughout interactions in the breakthrough regime. However, corresponding consumption speed values are lower than 1-D laminar flame speed values. Detailed chemistry analysis of downstream interaction at the leading edge is carried out. These interactions lead to mutual annihilation at the leading edge in the "Breakthrough" regime. During intermediate stages of the interaction, the mixture in between the interacting flames shows rich burning conditions. As the interaction proceeds the pool of products expands against the counter velocity gradient imposed by the vortex. The decrease in the temperature causes a steady decrease in the rates of reaction of the chain branching reactions causing. The behavior of various reaction layers is dictated to a large extent by their arrangement across the region of interaction. A simple two-step global reaction mechanism is formulated for lean methane combustion. These simple chemistry computations are carried out in an axis-symmetric configuration. Four distinct regimes of interaction: (1) the "laminar kernel" regime, (2) the "wrinkled kernel" regime, (3) the "breakthrough" regime, and the (4) "global extinction" regime are observed. Interactions in the laminar kernel regime show only minor deviations from unperturbed kernel values. Vortices in the wrinkled kernel regime impose substantial stretch on the kernel causing major deviations from unperturbed kernel values. A sharp drop in the flame surface area and the integrated reaction rate is observed during breakthrough. The primary mechanism governing global extinction is downstream flame interactions. A turbulent combustion diagram was derived for kernel-vortex interactions, which delineates conditions at each regime.
机译:通过核-涡相互作用研究了预混火焰对不稳定拉伸的响应。在这种配置中,火花点火的内核与强度可变的涡旋对(2D)或环形涡旋(3D)相互作用。探索了详细和简单的化学方法。在详细的化学工作中,使用了稀氢气-空气混合物。涡流会导致内核形貌明显变形。两种不同的制度;观察到“突破”和“灭绝”。在突破过程中,在整个相互作用过程中观察到火焰面积和体积反应速率值的连续增加。但是,相应的消耗速度值低于一维层流火焰速度值。在前沿进行了下游相互作用的详细化学分析。这些相互作用导致“突破”政权的前沿相互毁灭。在相互作用的中间阶段,相互作用的火焰之间的混合物显示出丰富的燃烧条件。随着相互作用的进行,产物池逆着由涡流施加的反向速度梯度膨胀。温度的降低引起链支化反应引起的反应速率的稳定降低。各种反应层的行为在很大程度上取决于它们在整个相互作用区域中的排列。为贫甲烷燃烧制定了一个简单的两步全局反应机理。这些简单的化学计算以轴对称配置进行。四种不同的相互作用机制:(1)“层状核”机制,(2)“皱纹核”机制,(3)“突破”机制和(4)“全球灭绝”机制。层状内核状态下的相互作用仅显示出与未干扰的内核值之间的微小偏差。起皱的籽粒状态下的涡流会在籽粒上施加很大的拉伸,从而导致与未扰动的籽粒值产生重大偏差。在穿透过程中,观察到火焰表面积和综合反应速率急剧下降。控制全球灭绝的主要机制是下游火焰相互作用。得出了涡旋相互作用的湍流燃烧图,该图描绘了每种状态下的条件。

著录项

  • 作者

    Kolera-Gokula, Hemanth.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Automotive.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术及设备;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:40:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号