首页> 外文学位 >A Mass Balance Field Study of the Phytoremediation of Trichloroethylene with Transgenic Poplars Genetically Modified with Cytochrome P450 2E1.
【24h】

A Mass Balance Field Study of the Phytoremediation of Trichloroethylene with Transgenic Poplars Genetically Modified with Cytochrome P450 2E1.

机译:用细胞色素P450 2E1基因修饰的转基因杨树对三氯乙烯进行植物修复的质量平衡现场研究。

获取原文
获取原文并翻译 | 示例

摘要

In a 6-year field study, transgenic poplar (Populas tremula x Populus alba) genetically modified with mammalian cytochrome P450 2E1 (CYP2E1) was evaluated for its ability to enhance degradation of trichloroethylene (TCE) in the subsurface. In previous laboratory studies, the transgenic poplar demonstrated greatly increased metabolism towards a variety of organic contaminants. Degradation of TCE in the field was studied in three test beds: a test bed containing twelve CYP2E1 hybrid poplar trees, a second test bed containing twelve wild-type hybrid poplar trees, and a third unplanted control bed. A mass-balance was performed to determine the fate of TCE and quantify primary loss pathways. Quantitative, real-time PCR (qPCR) assays targeting microbial genes involved in TCE degradation and field soil microcosm studies characterized microbial activity in bed soil. The transgenic CYP2E1 poplars demonstrated enhanced degradation of TCE in the field though not in proportion to enhanced removal observed in laboratory studies. Total chlorinated ethene removal was 87% in the CYP2E1 test bed, 85% in the wild-type, and 34% in the unplanted control bed in the 2012 growing season. Evapotranspiration of TCE from transgenic leaves was reduced by 80% and diffusion of TCE from transgenic stem was reduced by 90%. Chloride ion accumulated in the vadose zone soil of the planted test beds that approximately corresponded to the TCE loss, suggesting that dehalogenation was the primary loss fate. The application of a steady-state plant model indicated that the enhanced rate of metabolism in r2E1 roots was insufficient to substantially increase uptake of TCE in a field setting. This study demonstrates the importance of field tests of transgenic plants for phytoremediation applications. Inherent differences in mass transfer processes between laboratory and field experiments can limit the effectiveness of enhanced in planta metabolism.
机译:在一项为期6年的野外研究中,评估了用哺乳动物细胞色素P450 2E1(CYP2E1)基因修饰的转基因杨树(Populas tremula x Populus alba)增强地下三氯乙烯(TCE)降解的能力。在先前的实验室研究中,转基因杨树显示出对多种有机污染物的代谢大大增强。在三个试验床上研究了TCE的降解情况:一个试验床包含十二个CYP2E1杂交杨树,第二个试验床包含十二个野生型杂交杨树,第三个未种植对照床。进行质量平衡以确定TCE的命运并量化主要的丢失途径。针对涉及TCE降解的微生物基因的定量实时PCR(qPCR)分析和田间土壤微观研究表征了床层土壤中的微生物活性。转基因CYP2E1杨树在田间显示TCE降解增强,尽管与实验室研究中观察到的去除率提高不成比例。在2012年生长季节,CYP2E1测试床上的总氯乙烯去除率为87%,野生型为85%,未种植的控制床为34%。 TCE从转基因叶片的蒸腾作用减少了80%,TCE从转基因茎的扩散减少了90%。氯离子在种植的试验床的渗流带土壤中积累,大约对应于三氯乙烯的损失,这表明脱卤是主要的损失命运。稳态植物模型的应用表明,在田间环境中,r2E1根部新陈代谢速率的提高不足以显着增加TCE的吸收。这项研究证明了转基因植物在植物修复中的田间试验的重要性。实验室和田间实验之间传质过程的内在差异可能会限制植物代谢增强的有效性。

著录项

  • 作者

    Legault, Emily K.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Agriculture Forestry and Wildlife.;Engineering Environmental.;Engineering Civil.
  • 学位 Masters
  • 年度 2013
  • 页码 89 p.
  • 总页数 89
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号