首页> 外文学位 >Decisions in distributed wireless networks with imprecise information .
【24h】

Decisions in distributed wireless networks with imprecise information .

机译:信息不精确的分布式无线网络中的决策。

获取原文
获取原文并翻译 | 示例

摘要

The use of wireless technology is rapidly growing. The demand is so huge that the limited supply of resources is becoming the bottleneck. Thus, network designs need to be rethought. Most of the analyses to date consider complete network information, perfect knowledge of channel state at the receivers, perfect knowledge of location of destination or perfect feedback link. This is an idealization and new design strategies accounting for the imperfect or incomplete information are needed. In this thesis, we will consider the effect of various forms of incomplete and imperfect knowledge motivated by practical protocol designs. The basic theme of the results is an old adage "If we know more, we can achieve more." This thesis applies this adage to networks, where more information about the network translates into higher throughput or diversity.;We will first study a diversity multiplexing tradeoff for both frequency division duplex (FDD) and time division duplex (TDD) systems, when both receiver and transmitter knowledge about the channel is noisy and potentially mismatched. We break the mold of all current channel state based protocols by using multiple rounds of conferencing to extract more bits about the actual channel. Multiple rounds of conferencing provide more refined information about the network at the nodes, leading to improved diversity order with every round of communication. The protocols are on-demand in nature, using high powers for training and feedback only when the channel is in poor states. The key result in FDD systems is that the diversity multiplexing tradeoff with perfect training and K levels of perfect feedback can be achieved, even when there are errors in training the receiver and errors in the feedback link, with a multi-round protocol which has K rounds of training and K -- 1 rounds of binary feedback. For TDD systems, we also develop new achievable strategies with multiple rounds of communication between the transmitter and the receiver, which use the reciprocity of the forward and the feedback channel. The multi-round TDD protocol achieves a diversity-multiplexing tradeoff which uniformly dominates its FDD counterparts, where no channel reciprocity is available.;We will then focus on the case when the destination is mobile and the placement of base station and the relay station in the network has to be decided. To make progress, we introduce an alternative perspective where the objective is maximizing coverage for a given rate. The new objective captures the problem of how to deploy relays to provide a given level of service to a particular geographic area, where the relay locations become a design parameter that can be optimized. We evaluate the decode and forward (DF) and compress and forward (CF) strategies for the relay channel with respect to the new objective of maximizing coverage. When the objective is maximizing rate, different locations of the destination favor different strategies. When the objective is coverage for a given rate, and the relay is able to decode, DF is uniformly superior in that it provides coverage at any point served by CF. While the coverage provided by DF is sensitive to changes in the location of the relay and the path loss exponent, CF exhibits a more graceful degradation with respect to such changes.;Finally, we formalize the increase of sum-rate with increased knowledge of the network state in an interference network. The knowledge of network state is measured in terms of the number of hops of information available to each node and is labeled each node's local view. To understand how much capacity is lost due to limited information, we propose to use the metric of normalized sum-capacity, which is the h-hop local view sum-capacity divided by global-view sum-capacity. For the cases of one and two-local view, we characterize the normalized sum-capacity for many classes of deterministic and Gaussian interference networks. In many cases, a scheduling scheme called maximal independent graph scheduling is shown to achieve normalized sum-capacity. We also show that its generalization for one-hop local view, labeled coded maximal independent set scheduling, achieves capacity whenever its uncoded counterpart fails to do so.
机译:无线技术的使用正在迅速增长。需求是如此之大,以至于有限的资源供应已成为瓶颈。因此,需要重新考虑网络设计。迄今为止,大多数分析都考虑了完整的网络信息,对接收器的信道状态的全面了解,对目的地位置的全面了解或完善的反馈链路。这是一种理想化方法,因此需要针对不完整或不完整信息的新设计策略。在本文中,我们将考虑实际协议设计所激发的各种形式的不完整和不完美知识的影响。结果的基本主题是一句古老的格言:“如果我们知道更多,我们就能取得更多成就。”本文将这一格言应用于网络,其中有关网络的更多信息会转化为更高的吞吐量或分集。我们将首先研究频分双工(FDD)和时分双工(TDD)系统的分集复用权衡,发射机关于信道的知识很嘈杂,并且可能不匹配。通过使用多轮会议来提取有关实际信道的更多位,我们打破了所有当前基于信道状态的协议的范式。多轮会议可在节点上提供有关网络的更精细的信息,从而使每一轮通信的分集顺序得到改善。这些协议本质上是按需的,仅在信道处于不良状态时才使用高功率进行训练和反馈。 FDD系统的主要结果是,即使在训练接收器时出现错误,并且在反馈链路中使用K的多轮协议出错,也可以实现具有完美训练和K级完美反馈的分集复用权衡。轮训练和K-1轮二进制反馈。对于TDD系统,我们还开发了可实现的新策略,即在发射器和接收器之间进行多轮通信,这些通信使用前向和反馈通道的互易性。多轮TDD协议实现了分集多路复用权衡,该权衡统一了其FDD对等方(其中没有可用的通道互易性);然后我们将重点讨论目标是移动的情况以及基站和中继站的位置网络必须决定。为了取得进展,我们引入了另一种观点,即目标是在给定费率的情况下最大化覆盖率。新目标捕获了如何部署中继以向特定地理区域提供给定服务水平的问题,在该特定地理区域中,中继位置成为可以优化的设计参数。关于最大化覆盖范围的新目标,我们评估了中继信道的解码和转发(DF)和压缩和转发(CF)策略。当目标是最大化速率时,目的地的不同位置会采用不同的策略。当目标是给定速率的覆盖范围并且中继器能够解码时,DF的优势就在于统一,因为它可以在CF服务的任何点提供覆盖范围。虽然DF提供的覆盖范围对中继器位置的变化和路径损耗指数很敏感,但CF相对于这种变化表现出更适度的下降。干扰网络中的网络状态。网络状态的知识是根据每个节点可用的信息跃点数来衡量的,并标记为每个节点的本地视图。为了了解由于有限的信息而损失了多少容量,我们建议使用归一化和容量的度量,即h跳局部视图和容量除以全局视图和容量。对于一局部视图和二局部视图,我们描述了许多确定性和高斯干扰网络类别的归一化和容量。在许多情况下,显示了一种称为最大独立图调度的调度方案,可以实现归一化和容量。我们还表明,只要未编码的对等视图未能做到这一点,其对一跳本地视图(标记为编码的最大独立集调度)的泛化就可以实现容量。

著录项

  • 作者

    Aggarwal, Vaneet.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Statistics.;Engineering Electronics and Electrical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号