首页> 外文学位 >Nonlinear Mixing in Optical Multicarrier Systems.
【24h】

Nonlinear Mixing in Optical Multicarrier Systems.

机译:光学多载波系统中的非线性混频。

获取原文
获取原文并翻译 | 示例

摘要

Although optical fiber has a vast spectral bandwidth, efficient use of this bandwidth is still important in order to meet the ever increased capacity demand of optical networks. In addition to wavelength division multiplexing, it is possible to partition multiple low-rate subcarriers into each high speed wavelength channel. Multicarrier systems not only ensure efficient use of optical and electrical components, but also tolerate transmission impairments. The purpose of this research is to understand the impact of mixing among subcarriers in Radio-Over-Fiber (RoF) and high speed optical transmission systems, and experimentally demonstrate techniques to minimize this impact. We also analyze impact of clipping and quantization on multicarrier signals and compare bandwidth efficiency of two popular multiplexing techniques, namely, orthogonal frequency division multiplexing (OFDM) and Nyquist modulation.;For an OFDM-RoF system, we present a novel technique that minimizes the RF domain signal-signal beat interference (SSBI), relaxes the phase noise limit on the RF carrier, realizes the full potential of optical heterodyne-based RF carrier generation, and increases the performance-to-cost ratio of RoF systems. We demonstrate a RoF network that shares the same RF carrier for both downlink and uplink, avoiding the need of an additional RF oscillator in the customer unit. For multi-carrier optical transmission, we first experimentally compare performance degradations of coherent optical OFDM and single-carrier Nyquist pulse modulated systems in a nonlinear environment. We then experimentally evaluate SSBI compensation techniques in the presence of semiconductor optical amplifier (SOA) induced nonlinearities for a multicarrier optical system with direct detection. We show that SSBI contamination can be significantly reduced from the data signal when the carrier-to-signal power ratio is sufficiently low.
机译:尽管光纤具有很大的频谱带宽,但是为了满足光网络不断增长的容量需求,有效利用此带宽仍然很重要。除了波分复用以外,还可以将多个低速率子载波划分为每个高速波长信道。多载波系统不仅可以确保光学和电气组件的有效使用,还可以承受传输损伤。这项研究的目的是了解光纤无线电(RoF)和高速光传输系统中子载波之间混合的影响,并通过实验证明将这种影响最小化的技术。我们还分析了削波和量化对多载波信号的影响,并比较了两种流行的复用技术(即正交频分复用(OFDM)和奈奎斯特调制)的带宽效率;对于OFDM-RoF系统,我们提出了一种将信噪比最小化的新技术。 RF域信号信号差拍干扰(SSBI),放宽了RF载波的相位噪声限制,实现了基于光学外差的RF载波生成的全部潜力,并提高了RoF系统的性能/成本比。我们演示了一个RoF网络,该网络在下行链路和上行链路上共享相同的RF载波,从而避免了客户单元中需要额外的RF振荡器。对于多载波光传输,我们首先通过实验比较非线性环境中相干光OFDM和单载波奈奎斯特脉冲调制系统的性能下降。然后,我们在存在直接检测的多载波光学系统的半导体光放大器(SOA)引起的非线性的情况下,通过实验评估SSBI补偿技术。我们表明,当载波信号功率比足够低时,可以从数据信号中显着减少SSBI污染。

著录项

  • 作者

    Hameed, Mahmood Abdul.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Electrical engineering.;Optics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 75 p.
  • 总页数 75
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号