首页> 外文学位 >Synthetic and systems biology approaches to characterizing the biochemical events underlying gyrase inhibitor-induced cell death in Escherichia coli.
【24h】

Synthetic and systems biology approaches to characterizing the biochemical events underlying gyrase inhibitor-induced cell death in Escherichia coli.

机译:合成和系统生物学方法来表征大肠杆菌中促旋酶抑制剂诱导的细胞死亡的生化事件。

获取原文
获取原文并翻译 | 示例

摘要

The elucidation and characterization of cellular gene expression and phenotypic responses from the structure of gene regulatory networks is among the focal points of systems biology. Along these lines, one objective of the emergent field of synthetic biology, in which engineered genetic circuits are interfaced with the natural regulatory architecture of the cell, is to expand our knowledge of natural biological networks. As such, the employment of synthetic experimental platforms, and thus "programmable cells", in conjunction with systems-level analyses presents one with a powerful methodology for use in studies aimed at providing new biological insight. Accordingly, this thesis explores the intersection of synthetic and systems biology and culminates in the discovery of a novel, DNA gyrase inhibitor-induced oxidative damage cellular death pathway. We first designed an artificial, RNA-based gene expression system for precise regulation of mRNA translation in prokaryotes (referred to as riboregulation). This system exploits RNA's structure forming potential for tight cis-repression and sequence-specific binding capability for exacting trans-activation of protein expression. Next, we applied our riboregulation platform to the study of the endogenous gyrase inhibitor, CcdB. In-depth, in vivo characterization of this peptide poison, which typically ensures proper segregation of the F plasmid, has been prohibited by its potent toxicity and available experimental techniques. Using our system, we were able to phenotypically monitor the effect of CcdB in several E. coli strains. In addition, we profiled the gene expression response of these strains to CcdB poisoning and taking a systems biology approach in our analysis, identified several unique and significantly changing biochemical pathways. Finally, we expanded our analysis of gyrase inhibition to include functionally analogous quinolone antibiotics, and attempted to uncover the series of secondary biochemical events which commonly contribute to cell death following gyrase poisoning. We demonstrate that gyrase inhibition induces the generation of superoxide and hydroxyl radical oxidative species, which are integral to cell killing. We also show that iron-sulfur clusters play a key role in this process---superoxide-based oxidation of iron-sulfur clusters promotes a breakdown in intracellular iron regulatory dynamics which, in turn, drives production of highly deleterious hydroxyl radicals.
机译:从基因调控网络的结构阐明和表征细胞基因表达和表型反应是系统生物学的重点。沿着这些思路,合成生物学新兴领域的一个目标是扩大我们对天然生物网络的了解,在该领域中,工程遗传电路与细胞的天然调控结构相连接。因此,使用合成实验平台,从而使用“可编程细胞”,再加上系统级分析,为人们提供了一种用于研究的新方法,旨在提供新的生物学见解。因此,本论文探索了合成生物学和系统生物学的交叉点,并最终发现了一种新型的,由DNA促旋酶抑制剂诱导的氧化损伤细胞死亡途径。我们首先设计了一个基于RNA的人工基因表达系统,用于精确调节原核生物中的mRNA翻译(称为核糖调节)。该系统利用了RNA的结构形成潜力,可以实现严格的顺式抑制和精确的反式激活蛋白表达的序列特异性结合能力。接下来,我们将我们的核糖调节平台应用于内源回旋酶抑制剂CcdB的研究。这种肽毒物的深入,体内表征(通常可确保F质粒的正确分离)已被其强大的毒性和可用的实验技术所禁止。使用我们的系统,我们能够表型监测CcdB在几种大肠杆菌菌株中的作用。此外,我们分析了这些菌株对CcdB中毒的基因表达反应,并在我们的分析中采用了系统生物学方法,确定了几种独特且显着变化的生化途径。最后,我们将对促旋酶抑制作用的分析扩展到了功能上类似的喹诺酮类抗生素,并试图揭示一系列继发生化事件,这些事件通常导致促旋酶中毒后细胞死亡。我们证明了旋涡酶抑制诱导超氧化物和羟基自由基氧化物种的生成,这是细胞杀伤所不可或缺的。我们还表明,铁-硫簇在此过程中起着关键作用-基于超氧化物的铁-硫簇氧化会促进细胞内铁调节动力学的破坏,进而推动高度有害的羟基自由基的产生。

著录项

  • 作者

    Dwyer, Daniel John, II.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Biology Molecular.; Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学 ; 生物化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号