首页> 外文学位 >Performance of nanostructured metal oxane derived ceramic membranes for fuel cell applications.
【24h】

Performance of nanostructured metal oxane derived ceramic membranes for fuel cell applications.

机译:纳米结构的金属氧烷衍生的陶瓷膜在燃料电池中的性能。

获取原文
获取原文并翻译 | 示例

摘要

An iron-based ceramic material is shown to be a practical candidate as an electrolyte material for proton exchange membrane in fuel cells. These membranes have comparable conductivity to the NafionRTM membrane with the advantages of lower permeability of methanol, less sensitivity to humidity, good chemical stability in fuel cell environment and lower material costs. Iron oxide nanoparticles (ferroxane) and aluminum oxide nanoparticles (alumoxane) were prepared as a pre-cursor materials for membrane fabrication. The structures of ferroxane and alumoxane derived ceramics were characterized with FTIR, SEM, TEM, and nitrogen adsorption-desorption. Protonic conductivity of the sintered membranes was studied by electrochemical impedance spectroscopy (EIS) to determine their feasibility in fuel cell applications. Ferroxane derived ceramics fired at 300°C has high proton conductivity and low dependence of humidity (ranging from 1.29 x 10-2 to 2.65 x 10-2 S·cm-1 at relative humidities of 33% to 100%). The values are comparable to, but on the low end of, the reported conductivities of Nafion. Aluminum-based ceramic material (alumoxane) has a lower conductivity at 2.23 x 10-4 to 3.83 x 10-4 S·cm -1 from 33% RH to 100% RH. The conductivity study as a function of operating temperature indicated the proton transfer for sintered ferroxane-derived membrane likely occurs via a Grotthus mechanism. The results of H2/air fuel cell indicated sintered ferroxane electrolyte could be operated at low temperature. The fuel cell exhibited steady performance with increasing power density over time. The sintered ferroxane-derived membrane with PVA sintered at 500°C has a power density of 5.21 mW·cm-2 and a current density of 16.5 mA·cm-2 measured at room temperature. The methanol permeabilities of sintered ferroxane and alumoxane derived ceramics were lower than that of Nafion and were 1.23 x 10-7 and 1.65 x 10-7 cm2·s-1 respectively. However, the open circuit voltage of ferroxane in DMFC was not improved in comparison to Nafion. Ferroxane-derived ceramic electrolyte sintered at 300°C in methanol/air fuel cell measured at 20°C had a power density of 7.7 muW·cm-2 with 2 M methanol solution.{09}The power density increased to 30 muW·cm-2 with increasing methanol concentration to 18.5 M.
机译:示出铁基陶瓷材料作为燃料电池中的质子交换膜的电解质材料是实用的候选物。这些膜具有与NafionRTM膜相当的电导率,其优点是甲醇的渗透性较低,对湿度的敏感性较低,在燃料电池环境中化学稳定性好以及材料成本较低。制备了氧化铁纳米颗粒(铁氧烷)和氧化铝纳米颗粒(铝氧烷)作为膜制造的前体材料。用FTIR,SEM,TEM和氮吸附-脱附对铁氧烷和铝氧烷衍生的陶瓷结构进行了表征。通过电化学阻抗谱(EIS)研究了烧结膜的质子传导率,以确定其在燃料电池应用中的可行性。在300°C的温度下烧制的由铁氧烷衍生的陶瓷具有较高的质子传导性和较低的湿度依赖性(相对湿度为33%至100%时,范围为1.29 x 10-2至2.65 x 10-2 S·cm-1)。该值可与Nafion的电导率相媲美,但处于较低水平。铝基陶瓷材料(铝氧烷)在33%RH至100%RH下的电导率较低,为2.23 x 10-4至3.83 x 10-4 S·cm -1。电导率研究与工作温度的关系表明,烧结的铁氧烷衍生膜的质子转移可能是通过Grotthus机理发生的。 H2 /空气燃料电池的结果表明烧结的铁氧烷电解质可以在低温下运行。燃料电池表现出稳定的性能,并且随着时间的推移功率密度增加。在500℃下烧结了具有PVA的源自铁氧烷的烧结膜的功率密度为5.21mW·cm-2,在室温下测量的电流密度为16.5mA·cm-2。烧结的铁氧烷和铝氧烷衍生的陶瓷的甲醇渗透率低于Nafion,分别为1.23 x 10-7和1.65 x 10-7 cm2·s-1。然而,与Nafion相比,DMFC中的铁氧烷的开路电压没有得到改善。在20°C下于300°C的甲醇/空气燃料电池中烧结的,来自铁氧烷的陶瓷电解质在2 M的甲醇溶液中的功率密度为7.7μW·cm-2。{09}功率密度增加至30μW·cm -2,甲醇浓度增加至18.5M。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号