首页> 外文学位 >Investigation of carbon profiles for enhanced boron confinement and improved carrier transport in strained silicon germanium nanolayers for heterojunction bipolar transistors.
【24h】

Investigation of carbon profiles for enhanced boron confinement and improved carrier transport in strained silicon germanium nanolayers for heterojunction bipolar transistors.

机译:在异质结双极晶体管的应变硅锗纳米层中研究碳分布,以增强硼的含量并改善载流子的传输。

获取原文
获取原文并翻译 | 示例

摘要

This research covers a breadth of topics, in Chapters 1 through 7, ranging from the crystal lattice, to dopant diffusion in SiGe, to SiGe and SiGeC chemical vapor deposition, to the Si/SiGe and Si/SiGeC energy band structure, and NPN SiGeC HBT AC and DC characteristics. Chapters 8 and 9 contain the results of the research, which relates the film growth and carbon positioning to boron diffusion, sheet resistance, and device performance; specifically current gain, fmax, and noise figures of merit.; The first objective of the dissertation was to investigate carbon doping profiles in nano-layers (≤32 nm) of silicon germanium (Si1-xGe x), and provide an understanding of "remote carbon boron confinement" (RCBC), which is demonstrated to exploit the advantages of carbon to increase NPN HBT (heterojunction bipolar transistor) performance, reduce base resistance, and improve overall noise figures of merit. The second objective was to investigate the noise characteristics of this method compared to the standard method of placing carbon throughout the lattice, which is known as "uniform carbon boron confinement" (UCBC).; The current technological development towards smaller and faster devices has forced engineers and scientists to look into materials other than silicon, but which are highly compatible. A natural choice is the Si1-xGe x alloy, since Ge is also a Group IV. Si1-xGex has the same lattice structure as Si, but its lattice constant is 4.2% larger (aSi = 0.543nm, aGe = 0.567nm), and the bandgap is less than that of Si (Eg_Si = 1.11eV, Eg_Ge = 0.67eV). This opens the possibility of bandgap, strain, and dopant diffusion engineering, all of which affect the material and electronic properties of devices.; The primary benefit of carbon is to reduce the diffusion of boron in Si1-xGex thus keeping the base narrow for significantly reduced electron transit times and increased unity gain cutoff frequencies (fT). However the utilization of carbon reduces base conductivity and increases base recombination current, while reducing the built-in biaxial strain. This latter property may or may not be desirable, while the first two are not desirable having negative consequences for fmax and noise figures of merit such as NF min.; Chapter 8 discusses portions of this research, which identified a first-to-be-published method for carbon doping of silicon germanium films, which enhances the carbon confinement of boron, significantly reduces film resistance by approximately 23%, and increases the NPN HBT device performance. Chapter 9 discusses the improvements in noise figures of merit for an NPN HBT, which arise from improved film qualities presented in the Chapter 8 discussion. This research also illustrates that the device performance figures of merit such as base resistance, current gain, and subsequent noise figures are significantly determined during the epitaxial film growth.
机译:这项研究涵盖第1至第7章中的广泛主题,从晶格到SiGe中的掺杂剂扩散,SiGe和SiGeC化学气相沉积,Si / SiGe和Si / SiGeC能带结构以及NPN SiGeC HBT交流和直流特性。第8章和第9章包含了研究结果,该研究结果将膜的生长和碳的位置与硼的扩散,薄层电阻和器件性能相关。特别是电流增益,fmax和噪声品质因数。本文的第一个目的是研究硅锗(Si1-xGe x)纳米层(≤32nm)中的碳掺杂分布,并提供对“远程碳硼限制”(RCBC)的理解,这证明了利用碳的优势来提高NPN HBT(异质结双极晶体管)性能,降低基极电阻并改善整体噪声品质因数。第二个目的是研究这种方法的噪声特性,与在整个晶格中放置碳的标准方法(称为“均匀碳硼约束”(UCBC))相比。当前朝着更小,更快的设备发展的技术迫使工程师和科学家们研究除了硅之外的其他材料,但它们具有高度的兼容性。一个自然的选择是Si1-xGe x合金,因为Ge也是IV组。 Si1-xGex具有与Si相同的晶格结构,但其晶格常数大4.2%(aSi = 0.543nm,aGe = 0.567nm),并且带隙小于Si(Eg_Si = 1.11eV,Eg_Ge = 0.67eV) )。这带来了带隙,应变和掺杂剂扩散工程的可能性,所有这些都会影响器件的材料和电子性能。碳的主要好处是可以减少硼在Si1-xGex中的扩散,从而保持基极狭窄,从而显着缩短电子传输时间并提高单位增益截止频率(fT)。然而,碳的利用降低了基极电导率并增加了基极复合电流,同时减小了内在的双轴应变。后一种特性可能是理想的,也可能不是理想的,而前两种特性则对fmax和品质因数(例如NF min)产生负面影响。第8章讨论了该研究的各个部分,这些研究确定了硅锗薄膜碳掺杂的第一种方法,该方法可以增强硼的碳约束,显着降低薄膜电阻约23%,并增加NPN HBT器件性能。第9章讨论了NPN HBT噪声品质因数的改进,这是由第8章讨论中提出的改进的胶片质量引起的。这项研究还表明,在外延膜生长期间,器件性能指标(如基极电阻,电流增益和后续噪声指标)得到了显着确定。

著录项

  • 作者

    Enicks, Darwin Gene.;

  • 作者单位

    University of Colorado at Colorado Springs.;

  • 授予单位 University of Colorado at Colorado Springs.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号