首页> 外文学位 >Development and application of a novel near-field microwave probe for local broadband characterization of ferromagnetic resonance.
【24h】

Development and application of a novel near-field microwave probe for local broadband characterization of ferromagnetic resonance.

机译:新型近场微波探针用于铁磁谐振的局部宽带表征的开发和应用。

获取原文
获取原文并翻译 | 示例

摘要

A novel near-field microwave probe is developed for the characterization of magnetic materials. The ferromagnetic resonance probe consists of a shorted micro-coax, where the current path is a Cu thin film that sits on top of a focused ion beam deposited buffer layer. The buffer layer creates a mechanically more robust probe and leads to an increase in sensitivity. This is demonstrated through measurements on a broad range of samples, from common magnetic materials such as NiFe, to advanced materials such as multiferroic nanocomposites, where the magnetization dynamics are more complex. The data from these measurements are used to extract parameters on both the static and dynamic properties of the probed sample, such as the anisotropy field and the intrinsic magnetic damping. These parameters are important in the design of magneto-electronic devices, like the components of a hard drive in the magnetic recording industry. The main attributes of this technique are that it is broadband, it is local with the potential to achieve higher spatial resolution, and it is a non-contact method, although it is possible to measure a material while in contact. Because of the probe's metallic tip, and the ability to come in contact with the sample, it was possible to extend the measurements to both magnetically and electrically characterize the multiferroic material, which is of interest for an advanced media concept (Electrically Assisted Magnetic Recording). Finally, the probe can also measure samples of any form factor (e.g. wafers, media disc, chips), and can therefore be used to characterize devices in their working environment, or between fabrication steps.
机译:新型近场微波探头被开发用于表征磁性材料。铁磁谐振探头由短路的微同轴电缆组成,其中电流路径是位于聚焦离子束沉积缓冲层顶部的Cu薄膜。缓冲层产生机械上更坚固的探针,并导致灵敏度提高。通过对各种样品的测量证明了这一点,从普通的磁性材料(如NiFe)到先进的材料(如多铁性纳米复合材料),这些材料的磁化动力学更加复杂。这些测量的数据用于提取所探测样品的静态和动态特性参数,例如各向异性场和固有磁阻尼。这些参数在磁电子设备的设计中很重要,例如磁记录行业中硬盘驱动器的组件。该技术的主要属性是宽带,它是局部的,具有实现更高空间分辨率的潜力,它是一种非接触式方法,尽管可以在接触时测量材料。由于探头的金属尖端以及与样品接触的能力,因此有可能扩展测量范围,以磁性和电气方式表征多铁性材料,这是高级介质概念(电子辅助磁记录)的关注点。最后,该探针还可以测量任何形状因子的样品(例如晶片,介质盘,芯片),因此可以用于表征其工作环境中或制造步骤之间的器件。

著录项

  • 作者

    Benatmane, Mahmoud Nadjib.;

  • 作者单位

    Georgetown University.;

  • 授予单位 Georgetown University.;
  • 学科 Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号