首页> 外文学位 >Characterization of the influence of a favorable pressure gradient on the basic structure of a mach 5.0 high reynolds number supersonic turbulent boundary layer.
【24h】

Characterization of the influence of a favorable pressure gradient on the basic structure of a mach 5.0 high reynolds number supersonic turbulent boundary layer.

机译:表征有利压力梯度对马赫数5.0高雷诺数超音速湍流边界层基本结构的影响。

获取原文
获取原文并翻译 | 示例

摘要

High-speed high Reynolds number boundary layer flows with mechanical non-equilibrium effects have numerous practical applications; examples include access-to-space ascent, re-entry and descent, and military hypersonic systems. However, many of the basic turbulent flow processes in this regime are poorly understood and are beyond the realm of modern direct numerical simulations Previous studies have shown that curvature driven pressure gradients significantly alter the state of the turbulence in high-speed boundary layers; the turbulence levels have been shown to decrease by large amounts (up to 100%) and the Reynolds shear stress has been shown to change sign. However, most of our understanding is based on point measurement techniques such as hot-wire and Laser Doppler anemometry acquired at low to moderate supersonic Mach numbers (i.e., M = 2-3). After reviewing the available literature, the following scientific questions remain unanswered pertaining to the effect of favorable pressure gradients: (1) How is state of the mean flow and turbulence statistics altered? (2) How is the structure of wall turbulence; break-up, stretch or a combination? (3) How are the Reynolds stress component production mechanisms altered? (4) What is the effect of Mach number on the above processes?;To answer these questions and to enhance the current database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties using two-dimensional particle image velocimetry (PIV) along with flow visualizations of a high speed (M = 4.88), high Reynolds number (Retheta ≈ 36,000) supersonic turbulent boundary layer with curvature-driven favorable pressure gradients (a nominally zero, a weak, and a strong favorable pressure gradient). From these data, detailed turbulence analyses were performed including calculating classical mean flow and turbulence statistics, examining turbulent stress production, and performing quadrant decomposition of the Reynolds stress for each pressure gradient case.;It was shown that the effect of curvature-driven favorable pressure gradients on the turbulent structure of a supersonic boundary layer was significant. For the strong pressure gradient model, the turbulent shear stress changed sign throughout the entire boundary layer; a phenomena was not observed to this magnitude in previous studies. Additionally, significant changes were seen in the turbulent structure of the boundary layer. It is believed that hairpin vortices organized within the boundary layer are stretched and then broken up over the favorable pressure gradient. Energy from these hairpin structures is transferred to smaller turbulent eddies as well as back into the mean flow creating a fuller mean velocity profile. It was determined that the effects of favorable pressure gradients on the basic structure of a turbulent Mach 5.0 boundary layer were significant, therefore increasing the complexity of computational modeling.
机译:具有机械非平衡作用的高速高雷诺数边界层流具有许多实际应用;这在实际应用中是非常重要的。例子包括进入太空的上升,再入和下降以及军事高超音速系统。但是,在这种情况下,许多基本的湍流过程尚不为人所知,并且超出了现代直接数值模拟的范围。先前的研究表明,曲率驱动的压力梯度会极大地改变高速边界层中湍流的状态。湍流水平已显示出大量降低(最高100%),并且雷诺剪切应力已显示出改变的迹象。但是,我们大多数的理解是基于点测量技术,例如以低到中等的超声马赫数(即M = 2-3)获得的热线和激光多普勒风速仪。在查阅现有文献后,关于有利的压力梯度的影响,以下科学问题仍未得到解答:(1)平均流量和湍流统计的状态如何改变? (2)壁湍流的结构如何?分手,伸展或组合? (3)雷诺应力成分的产生机理如何改变? (4)马赫数对上述过程的影响是什么?;为了回答这些问题并增强当前的数据库,进行了实验分析,以提供使用二维粒子图像的均值和湍流特性的高保真文档。测速(PIV)以及高速(M = 4.88),高雷诺数(Retheta≈ 36,000)超音速湍流边界层的流动可视化,并具有曲率驱动的有利压力梯度(名义上为零,弱和强有利)压力梯度)。根据这些数据,进行了详细的湍流分析,包括计算经典平均流量和湍流统计数据,检查湍流应力的产生以及针对每种压力梯度情况对雷诺应力进行象限分解。超音速边界层湍流结构上的梯度很显着。对于强压力梯度模型,湍流剪应力在整个边界层改变了符号。在以前的研究中没有观察到这种程度的现象。此外,边界层的湍流结构也发生了显着变化。据信在边界层内组织的发夹涡旋被拉伸,然后在有利的压力梯度上破裂。来自这些发夹结构的能量被转移到较小的湍流涡流中,然后又返回到平均流中,从而产生更完整的平均速度曲线。已确定有利的压力梯度对湍流的Mach 5.0边界层的基本结构的影响是显着的,因此增加了计算建模的复杂性。

著录项

  • 作者

    Tichenor, Nathan Ryan.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 445 p.
  • 总页数 445
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号