首页> 外文学位 >Thermomechanical manufacturing of polymer microstructures and nanostructures.
【24h】

Thermomechanical manufacturing of polymer microstructures and nanostructures.

机译:聚合物微结构和纳米结构的热机械制造。

获取原文
获取原文并翻译 | 示例

摘要

Molding is a simple manufacturing process whereby fluid tills a master tool and then solidifies in the shape of the tool cavity. The precise nature of material flow during molding has long allowed fabrication of plastic components with sizes 1 mm--1 m. Polymer molding with precise critical dimension control could enable scalable, inexpensive production of micro- and nanostructures for functional or lithographic use.; This dissertation reports experiments and simulations on molding of polymer micro- and nanostructures at length scales 1 nm--1 mm. The research investigates two main areas: (1) mass transport during micromolding and (2) polymer mechanical properties during nanomolding at length scales 100 nm. Measurements and simulations of molding features of size 100 nm--1 mm show local mold geometry modulates location and rate of polymer shear and determines fill time. Dimensionless ratios of mold geometry, polymer thickness, and bulk material and process properties can predict flow by viscous or capillary forces, shape of polymer deformation, and mold fill time. Measurements and simulations of molding at length scales 100 nm show the importance of nanoscale physical processes distinct from bulk during mechanical processing. Continuum simulations of atomic force microscope nanoindentation accurately model sub-continuum polymer mechanical response but highlight the need for nanoscale material property measurements to accurately model deformation shape. The development of temperature-controlled nanoindentation enables characterization of nanoscale material properties. Nanoscale uniaxial compression and squeeze flow measurements of glassy and viscoelastic polymer show film thickness determines polymer entanglement with cooperative polymer motions distinct from those observed in bulk.; This research allows predictive design of molding processes and highlights the importance of nanoscale mechanical properties that could aid understanding of polymer physics.
机译:模制是一种简单的制造过程,通过该过程,流体填充到母模中,然后凝固成模腔的形状。成型过程中材料流动的精确特性长期以来允许制造尺寸为1 mm--1 m的塑料部件。具有精确的临界尺寸控制的聚合物成型可以实现可扩展的,廉价的生产用于功能或光刻用途的微结构和纳米结构。本文报道了在1 nm--1 mm的长度范围内模压聚合物微结构和纳米结构的实验和模拟。该研究调查了两个主要领域:(1)在微成型过程中的质量传递和(2)在纳米成型过程中长度尺度<100 nm的聚合物力学性能。对尺寸为100 nm--1 mm的成型特征的测量和模拟显示,局部模具几何形状可调节聚合物剪切的位置和速率,并确定填充时间。模具几何尺寸,聚合物厚度,散装材料和工艺特性的无因次比可以通过粘性或毛细作用力,聚合物变形的形状以及模具填充时间来预测流动。在小于100 nm的长度尺度上进行模制的测量和模拟表明,与机械加工过程中的体积不同,纳米级物理过程的重要性。原子力显微镜纳米压痕的连续谱模拟可以准确地模拟亚连续谱聚合物的机械响应,但强调了需要进行纳米级材料性能测量以准确地模拟变形形状。温度控制的纳米压痕的发展使得能够表征纳米级材料的性能。玻璃态和粘弹性聚合物的纳米级单轴压缩和挤压流动测量结果表明,膜厚决定了聚合物的缠结,而聚合物的协同运动不同于在本体中观察到的运动。这项研究可以对模塑工艺进行预测性设计,并强调了可以帮助理解聚合物物理的纳米级机械性能的重要性。

著录项

  • 作者

    Rowland, Harry D.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号