首页> 外文学位 >Fault evolution and earthquakes: A finite element study.
【24h】

Fault evolution and earthquakes: A finite element study.

机译:断层演化与地震:有限元研究。

获取原文
获取原文并翻译 | 示例

摘要

Earthquakes result from sudden fault slip; thus understanding the physics of faulting and fault evolution is important for mitigating earthquake hazards. In this study, I explore stress and strain evolution in faulting and fault evolution and their impacts on earthquakes, using 3D visco-elasto-plastic finite element (FE) models. These models are designed to incorporate the coupling between elasto-frictional upper crust and visco-elastic lower crust and uppermost mantle, and the coupling between fault slip and failure of surrounding upper crust. These couplings are important when studying the stress and strain evolution in a time period of decades to thousands of years long.; The New Madrid Seismic Zone (NMSZ) in central United States is a good example of intraplate seismicity, which cannot be readily explained by the plate tectonics theory and remains poorly understood. I have developed a 3D FE model to simulate stress evolution in the NMSZ and surrounding regions. I find that, following a large earthquake, intraplate seismic zones tend to stay in a Coulomb stress shadow for thousands of years, while significant amount of stress and strain energy relieved from the large earthquakes may migrate to and remain within the surrounding crust. The results are consistent with seismicity in the NMSZ region following the 1811-1812 large events.; To investigate fault evolution and seismicity in plate boundary zone, I have built a 3D dynamic model for the entire San Andreas Fault (SAF) system in California, with the first-order characters of its surface geometry. The results indicate that the geometry of the xi SAF may be the primary cause of the observed along-strike variation of slip rate, stress states, and seismicity. In particular, the Big Bend of the SAF causes the scattered seismicity in southern California and may have facilitated the development of the San Jacinto Fault (SJF) and other active faults there. I have explored the dynamic interactions between the SAF and SJF in the model and found that the initiation of the SJF tends to decrease fault slip rate on the southernmost SAF and focus strain energy in the Mojave Desert and along the East California Shear Zone. These results are consistent with the spatial distribution of earthquakes in southern California, and provide some insights into evolution of fault systems in the plate boundary zone as it continuously seeks the optimal way to accommodate the relative plate motion.
机译:地震是由突然的断层滑动引起的。因此,了解断层和断层演化的物理特征对于减轻地震危害非常重要。在这项研究中,我使用3D粘弹塑性有限元(FE)模型探讨了断层和断层演化中的应力和应变演化及其对地震的影响。这些模型的设计考虑了弹性摩擦上地壳与粘弹性下地壳与最上地幔之间的耦合,以及断层滑动与周围上地壳破坏之间的耦合。当研究数十至数千年的应力和应变演化时,这些耦合非常重要。美国中部的新马德里地震带(NMSZ)是板内地震活动的一个很好的例子,板块构造理论不能轻易解释它,并且仍然知之甚少。我已经开发了3D FE模型来模拟NMSZ和周围区域中的应力演化。我发现,在大地震之后,板内地震带往往会在库仑应力阴影中保留数千年,而从大地震中释放出来的大量应力和应变能可能会迁移并保留在周围的地壳内。结果与1811-1812年大事件之后NMSZ地区的地震活动一致。为了调查板块边界区域的断层演化和地震活动性,我为加利福尼亚的整个圣安德烈亚斯断层(SAF)系统建立了3D动态模型,其表面几何形状具有一阶特征。结果表明,xi SAF的几何形状可能是观察到的沿滑移速率,应力状态和地震活动性沿线变化的主要原因。特别是,SAF的大弯造成南加州的零星地震活动,可能促进了San Jacinto断层(SJF)和那里其他活动断层的发育。我在模型中探索了SAF和SJF之间的动力相互作用,发现SJF的启动趋于降低最南端SAF的断层滑动率,并集中莫哈韦沙漠和东加州剪切带的应变能。这些结果与加利福尼亚南部地震的空间分布是一致的,并为板块边界带断层系统的演化提供了一些见识,因为它不断寻求适应相对板块运动的最佳方法。

著录项

  • 作者

    Li, Qingsong.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

  • 入库时间 2022-08-17 11:40:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号