首页> 外文学位 >Ganymede's magnetosphere: Unraveling the Ganymede-Jupiter interaction through combining multi-fluid simulations and observations.
【24h】

Ganymede's magnetosphere: Unraveling the Ganymede-Jupiter interaction through combining multi-fluid simulations and observations.

机译:Ganymede的磁层:通过结合多流体模拟和观察来揭示Ganymede-Jupiter的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

The Galilean moon Ganymede provides a unique case study in furthering our understanding of how space plasmas interact with planetary magnetospheres. Ganymede is the largest of Jupiter's moons and the only one to have its own magnetosphere, which is embedded within the large Jovian magnetosphere. In order to understand the complex interactions in this system, we have implemented a novel three-dimensional modeling technique that represents different ion sources as collisionless fluids that interact via electric and magnetic fields. The results from this multi-fluid treatment are well correlated with observations of aurora and magnetic fields, and demonstrate the important role heavy ions and their gyromotion play in governing the shape and dynamics of Ganymede's magnetosphere. Predictions for the morphology of Ganymede's tail-side aurora were made using these simulations, which were later validated by the Hubble Space Telescope.; The multi-fluid nature of the simulations also allows one to track the differential acceleration of heavy and light mass ions sourced from Ganymede's ionosphere and the Jovian magnetosphere. Thus, sampling the simulated ion energies, temperatures and densities for each ion species along Galileo's trajectory permits the representation of simulated data in a way directly comparable to ion energy spectrograms from Galileo. This enables new interpretations of the heavily debated ionospheric outflow observations using a method based purely on the physics governing the magneto-plasma interactions of Ganymede's near space environment.
机译:伽利略卫星“伽尼米德”提供了一个独特的案例研究,以加深我们对空间等离子体与行星磁层相互作用的理解。木卫三是木星最大的卫星,也是唯一一个拥有自己磁层的卫星,该卫星嵌在大型木星磁层中。为了理解该系统中的复杂相互作用,我们已经实现了一种新颖的三维建模技术,该技术将不同的离子源表示为通过电场和磁场相互作用的无碰撞流体。这种多流体处理的结果与极光和磁场的观测密切相关,并证明了重离子及其旋回在控制木卫三磁层形状和动力学中的重要作用。使用这些模拟对木卫三尾侧极光的形态进行了预测,随后通过哈勃太空望远镜对其进行了验证。模拟的多流体性质也使人们能够追踪来自木卫三电离层和木星磁层的重质和轻质离子的差分加速度。因此,沿着伽利略轨迹对每种离子物种的模拟离子能,温度和密度进行采样,就可以以与伽利略的离子能谱图直接可比的方式表示模拟数据。这使人们能够使用一种纯粹基于控制木卫三近太空环境中磁等离子体相互作用的物理学的方法,对饱受争议的电离层流出观测进行新的解释。

著录项

  • 作者

    Paty, Carol S.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Geophysics.; Physics Astronomy and Astrophysics.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;天文学;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号