首页> 外文学位 >Rigorous Direct and Inverse Design of Photonic-Plasmonic Nanostructures
【24h】

Rigorous Direct and Inverse Design of Photonic-Plasmonic Nanostructures

机译:光子-肺纳米结构的严格正反设计

获取原文
获取原文并翻译 | 示例

摘要

Designing photonic-plasmonic nanostructures with desirable electromagnetic properties is a central problem in modern photonics engineering. As limited by available materials, engineering geometry of optical materials at both element and array levels becomes the key to solve this problem. In this thesis, I present my work on the development of novel methods and design strategies for photonic-plasmonic structures and metamaterials, including novel Green's matrix-based spectral methods for predicting the optical properties of large-scale nanostructures of arbitrary geometry. From engineering elements to arrays, I begin my thesis addressing toroidal electrodynamics as an emerging approach to enhance light absorption in designed nanodisks by geometrically creating anapole configurations using high-index dielectric materials. This work demonstrates enhanced absorption rates driven by multipolar decomposition of current distributions involving toroidal multipole moments for the first time. I also present my work on designing helical nano-antennas using the rigorous Surface Integral Equations method. The helical nano-antennas feature unprecedented beam-forming and polarization tunability controlled by their geometrical parameters, and can be understood from the array perspective. In these projects, optimization of optical performances are translated into systematic study of identifiable geometric parameters. However, while array-geometry engineering presents multiple advantages, including physical intuition, versatility in design, and ease of fabrication, there is currently no rigorous and efficient solution for designing complex resonances in large-scale systems from an available set of geometrical parameters. In order to achieve this important goal, I developed an efficient numerical code based on the Green's matrix method for modeling scattering by arbitrary arrays of coupled electric and magnetic dipoles, and show its relevance to the design of light localization and scattering resonances in deterministic aperiodic geometries. I will show how universal properties driven by the aperiodic geometries of the scattering arrays can be obtained by studying the spectral statistics of the corresponding Green's matrices and how this approach leads to novel metamaterials for the visible and near-infrared spectral ranges. Within the thesis, I also present my collaborative works as examples of direct and inverse designs of nanostructures for photonics applications, including plasmonic sensing, optical antennas, and radiation shaping.
机译:设计具有理想电磁特性的光子-等离激元纳米结构是现代光子学工程中的中心问题。受可用材料的限制,光学材料在元件和阵列层面的工程几何形状成为解决此问题的关键。在这篇论文中,我介绍了我对光子等离子体结构和超材料的新颖方法和设计策略的开发工作,其中包括新颖的基于格林矩阵的光谱方法,用于预测任意几何形状的大规模纳米结构的光学特性。从工程元件到阵列,我的论文都是针对环形电动力学的,这是一种通过使用高折射率介电材料以几何方式创建偶极结构来增强设计的纳米盘中光吸收的新兴方法。这项工作首次证明了由涉及环形多极矩的电流分布的多极分解驱动的吸收率提高。我还介绍了我使用严格的表面积分方程法设计螺旋形纳米天线的工作。螺旋纳米天线具有史无前例的波束形成和极化可调性,受其几何参数控制,可以从阵列的角度进行理解。在这些项目中,光学性能的优化被转化为可识别几何参数的系统研究。但是,尽管阵列几何工程具有多种优势,包括物理直觉,设计的通用性和易于制造,但目前尚没有严格有效的解决方案,可以根据一组可用的几何参数来设计大规模系统中的复杂共振。为了实现这一重要目标,我开发了一种基于格林矩阵方法的高效数字代码,用于对耦合的电偶极子和磁偶极子的任意阵列的散射进行建模,并展示了其与确定性非周期性几何形状中的光定位和散射共振的相关性。我将展示如何通过研究相应格林矩阵的光谱统计信息来获得由散射阵列的非周期性几何形状驱动的通用属性,以及该方法如何导致可见光和近红外光谱范围的新型超材料。在论文中,我还介绍了我的合作作品,作为用于光子学应用(包括等离子传感,光学天线和辐射整形)的纳米结构的正向和反向设计的示例。

著录项

  • 作者

    Wang, Ren.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Optics.;Electromagnetics.;Physics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:40:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号