首页> 外文学位 >Material parameter identification of acoustic polymeric foams via theoretical modeling and experimental measurements.
【24h】

Material parameter identification of acoustic polymeric foams via theoretical modeling and experimental measurements.

机译:通过理论建模和实验测量确定声学聚合物泡沫的材料参数。

获取原文
获取原文并翻译 | 示例

摘要

Unwanted noise can be detrimental to those exposed: negative effects may include hearing loss, sleep loss, and increased stress. Additionally, acoustic radiation may be damaging to sensitive mechanical and electrical systems because excess vibration and fatigue may be induced. For these reasons, noise reduction is of great interest to engineers. Approaches to noise control may be classified as active or passive. Passive noise control widely employs acoustical treatments with porous materials, known to be effective sound absorbers. The sound absorption coefficient provides a quantitative measure of the acoustic energy absorption for rigidly-backed porous materials. This frequency-dependent quantity may be obtained with acoustic measurement or predicted with empirical, microstructural, or phenomenological models. In this work, a phenomenological model for wave propagation in the acoustic impedance tube is presented. We derive free and forced responses of the coupled system and generate the normal-incidence sound absorption coefficient. The frequency range over which the model is valid is assessed. A direct model prediction of the normal-incidence absorption coefficient using known material properties provides this range. We formulate an optimization problem to obtain the set of material parameters for which the generated absorption profile best fits experimental data for a given foam. A piecewise objective function is presented in which the nonlinear constraints are inherent and the least-squares index is to be minimized. We adopt a non-gradient based search method for solution, and present resulting optimal design variables. We study the effect of the frequency discretization on the optimization outcome. The optimally-predicted parameters range within 0.6 to 11.3 percent error of the known material set.
机译:不需要的噪音可能会对暴露的人有害:负面影响可能包括听力下降,睡眠不足和压力增加。另外,声辐射可能会损坏敏感的机械和电气系统,因为可能会引起过度的振动和疲劳。由于这些原因,降噪引起了工程师的极大兴趣。噪声控制的方法可以分为主动或被动。被动噪声控制广泛采用对多孔材料的声学处理,这种材料被称为有效的吸声器。吸声系数提供了刚性背衬多孔材料的声能吸收的定量度量。该频率相关量可以通过声学测量获得,也可以通过经验,微观结构或现象学模型进行预测。在这项工作中,提出了一种在声阻抗管中传播的现象学模型。我们导出耦合系统的自由响应和强迫响应,并生成法向入射吸声系数。评估模型有效的频率范围。使用已知材料属性的法向入射吸收系数的直接模型预测提供了此范围。我们制定了一个优化问题,以获得一组材料参数,对于这些材料参数,所生成的吸收曲线最适合给定泡沫的实验数据。提出了一种分段目标函数,其中非线性约束是固有的,最小二乘指标要最小化。我们采用基于非梯度的搜索方法作为解决方案,并提出最终的最佳设计变量。我们研究了频率离散化对优化结果的影响。最佳预测参数的范围是已知材料集的0.6%至11.3%的误差。

著录项

  • 作者

    Frangakis, Stephanie.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemistry Polymer.; Engineering Mechanical.
  • 学位 M.S.M.E.
  • 年度 2006
  • 页码 46 p.
  • 总页数 46
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:40:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号