首页> 外文学位 >Architecture and design methodology for power gated programmable fabrics.
【24h】

Architecture and design methodology for power gated programmable fabrics.

机译:功率门控可编程结构的体系结构和设计方法。

获取原文
获取原文并翻译 | 示例

摘要

Under shrinking dimensions of feature size and power supplies, FPGAs have evolved from a mere prototyping or glue-logic unit to a viable platform for system level implementation. As fabrication technology has already touched the 65nm technology node, programmable fabrics are facing some of the daunting challenges such as, exponential increase in leakage current, decreased noise margin, reliability and narrow-width effects etc. Increase in leakage current is by far the most serious issue in ultra deep sub-micron designs due to the inherent power hungry architecture of FPGAs. The flexibility to implement various designs in the same piece of silicon results in massive under-utilization of FPGA resources in the spatial and temporal domain. These under-utilizations lead to standby power dissipation even if the transistors are completely inactive and have no meaningful output. The dependence of static power on temperature has also underscored its importance in nanometer designs. As we go further towards smaller process geometries, transistor packing density increases manifolds. This results in increased junction temperature and the possibility of a positive feedback loop between leakage current and temperature. Such interactions pose a serious threat to the reliability of a circuit.;Power management in programmable fabrics has become a necessity in technologies below 100 nm. So far, power consumption has been a major hurdle in such architectures to explore territories like mobile and portable applications. FPGA fabric needs a paradigm shift in the architecture and CAD tools so that power stringent applications can be implemented in a programmable device.;In this dissertation, we present a leakage tolerant architecture and design methodology to tackle static power dissipation for FPGA design flows. We show a new design methodology for reducing leakage power by exploiting temporal idleness in designs and accordingly group them into clusters that can be switched on and off depending upon their activity. We also propose a new Power State Controller (PSC) based MTCMOS FPGA architecture to mitigate static power dissipation. We have carried out detailed experiments and analyses to find out various trade-offs among important design variables like performance, active leakage, standby leakage, dynamic power, area etc. Based on our in-depth analyses we have proposed an optimal granularity at which leakage has to be controlled for proper trade-offs among these variables. Another focus of this dissertation is to develop an FPGA architectural exploration tool that gives fast estimates of the design metrics and allows us to gauge the effect of leakage aware CAD algorithms on such architectures. The tool is very flexible, in that it can estimate the leakage control granularity and the overhead for a wide variety of FPGA architectures. As the tool is event driven, it does not require extensive simulation, hence can be used to explore a large architectural design space. We also present in this dissertation, a power-aware floorplanner that adapts perfectly into such architectures so that maximum number of FPGA resources can be shut down at any given time.
机译:随着功能尺寸和电源尺寸的缩小,FPGA已经从单纯的原型设计或胶合逻辑单元发展成为可行的系统级平台。由于制造技术已经触及65纳米技术节点,可编程结构正面临一些艰巨的挑战,例如,泄漏电流呈指数增长,噪声容限降低,可靠性和窄幅效应等。泄漏电流的增长是迄今为止最大的挑战。由于FPGA固有的耗电架构,在超深亚微米设计中存在严重问题。在同一块硅片上实施各种设计的灵活性导致空间和时间域中FPGA资源的大量利用不足。这些利用不足会导致待机功耗,即使晶体管完全处于非活动状态且没有有意义的输出也是如此。静态功率对温度的依赖性也突出了其在纳米设计中的重要性。随着我们进一步朝着更小的工艺几何尺寸发展,晶体管的封装密度增加了歧管。这导致结温升高,并可能在泄漏电流和温度之间形成正反馈环路。这种相互作用严重威胁电路的可靠性。可编程结构中的电源管理已成为100 nm以下技术的必要条件。到目前为止,功耗一直是此类架构探索移动和便携式应用程序等领域的主要障碍。 FPGA架构需要在架构和CAD工具方面进行范式转换,以便可以在可编程设备中实现功率严格的应用。本文为实现FPGA设计流程的静态功耗,提出了一种耐泄漏的架构和设计方法。我们展示了一种新的设计方法,可通过利用设计中的时间闲置来减少泄漏功率,并相应地将它们分组为可根据其活动而打开和关闭的群集。我们还提出了一种新的基于电源状态控制器(PSC)的MTCMOS FPGA架构,以减轻静态功耗。我们进行了详细的实验和分析,以找出重要设计变量之间的各种折衷,例如性能,有源泄漏,待机泄漏,动态功率,面积等。在深入分析的基础上,我们提出了一种最佳粒度,可以在该粒度下进行泄漏必须控制这些变量之间的适当权衡。本论文的另一个重点是开发一种FPGA架构探索工具,该工具可以快速估计设计指标,并允许我们评估泄漏感知CAD算法对此类架构的影响。该工具非常灵活,因为它可以估计各种FPGA架构的泄漏控制粒度和开销。由于该工具是事件驱动的,因此不需要大量的仿真,因此可以用于探索大型的建筑设计空间。在本文中,我们还介绍了一种功率意识的布局规划器,它可以完美地适应此类架构,从而可以在任何给定时间关闭最大数量的FPGA资源。

著录项

  • 作者

    Bharadwaj, Rajarshee P.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 康复医学;
  • 关键词

  • 入库时间 2022-08-17 11:40:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号