首页> 外文学位 >Multilayer protein/polyelectrolyte assemblies as nanofilm biomaterials.
【24h】

Multilayer protein/polyelectrolyte assemblies as nanofilm biomaterials.

机译:多层蛋白质/聚电解质组件作为纳米膜生物材料。

获取原文
获取原文并翻译 | 示例

摘要

Biomaterials must meet diverse property demands in many applications. A coating approach---whereby a thin film is chosen based on its (bio)chemical and micro-mechanical properties, and a bulk material is chosen based on its structural, macro-mechanical, and degradation properties---allows for the effective decoupling of surface and bulk effects. We investigate here multilayer thin film assemblies, formed from charged macromolecules, as biomaterials of thickness ca. 10-100 nm (i.e. "nanofilms"). Employing the layer-by-layer method, we form multilayer films from polypeptide, polysaccharide, and protein building blocks. We focus on three questions. The first involves the importance of formation history on adsorbed layer structure. By considering a monolayer of fibronectin (a matrix protein known to enhance cell attachment and growth), we show formation history to significantly influence protein orientation, thereby suggesting its importance as a control variable in directing nanofilm assembly. We demonstrate that post-adsorption structural changes can either increase or decrease the number of cell binding sites available depending on the choice of the formation path. The second question involves the simultaneous influence of several important multilayer film variables: rigidity, charge, degree of hydration, and biofunctionality. By considering the influence of a model polypeptide-polysaccharide film on human umbilical vein endothelial cells, we elucidate the effects of these four important properties on the morphological response of contacting cells. We find cells spread on biofunctional films to remain spread on rigid films, and to retract somewhat on softer films. The third question concerns the extension of multilayer film biomaterials to the realm of tissue engineering. Within a human liver application, we determine film properties (composition, charge, rigidity, and biofunctionality) most suitable to promote hepatocyte growth, and thereby uncover best candidate systems for subsequent in vivo applications. We find composition and rigidity to be key for cell growth and attachment, biofunctionalization using collagen to be necessary only for certain films, and terminal layer charge to be fairly unimportant. Throughout, we exploit optical waveguide lightmode spectroscopy (OWLS) as a sensitive and precise means of measuring adsorption/film formation kinetics in situ.
机译:生物材料必须满足许多应用中各种不同的性能要求。涂层方法-根据其(生物)化学和微机械性能选择薄膜,并根据其结构,宏观机械和降解性能选择整体材料-允许有效表面和体积效应的去耦。我们在这里研究由带电大分子形成的多层薄膜组件,其厚度约为。 10-100 nm(即“纳米胶片”)。我们采用逐层方法,由多肽,多糖和蛋白质构件组成多层膜。我们专注于三个问题。首先涉及形成历史对吸附层结构的重要性。通过考虑单层纤连蛋白(已知增强细胞附着和生长的基质蛋白),我们显示形成历史显着影响蛋白取向,从而表明其作为控制纳米膜组装的控制变量的重要性。我们证明吸附后的结构变化可以增加或减少可用的细胞结合位点的数量,具体取决于形成路径的选择。第二个问题涉及几个重要的多层膜变量的同时影响:刚性,电荷,水合度和生物功能性。通过考虑模型多肽多糖膜对人脐静脉内皮细胞的影响,我们阐明了这四个重要特性对接触细胞形态反应的影响。我们发现细胞在生物功能膜上扩散,而在刚性膜上扩散,而在较软的膜上回缩。第三个问题涉及多层膜生物材料在组织工程领域的扩展。在人类肝脏应用中,我们确定最适合促进肝细胞生长的膜性质(组成,电荷,刚度和生物功能),从而为随后的体内应用揭示最佳候选系统。我们发现组成和刚性是细胞生长和附着的关键,使用胶原蛋白的生物功能化仅对于某些膜是必需的,而末端层电荷则完全不重要。在整个过程中,我们利用光波导光模光谱(OWLS)作为现场测量吸附/成膜动力学的灵敏而精确的手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号