首页> 外文学位 >Predicting the impacts of cloud processing on aerosol properties.
【24h】

Predicting the impacts of cloud processing on aerosol properties.

机译:预测云处理对气溶胶特性的影响。

获取原文
获取原文并翻译 | 示例

摘要

Cloud processing of aerosol sulfate and optical properties has important effects on the Earth's radiation balance, but computational limitations have inhibited direct microphysical (explicit) simulations in global atmospheric models. Here we describe state-of-the-art parameterizations of explicit behavior using a series of simulation techniques.; A Lagrangian microphysical parcel model was modified to include an efficient multivariate solving algorithm. A wide factorial domain of initial conditions, representing moderately clean to moderately polluted environments, was used to generate explicit predictions for lower troposphere stratiform clouds. Regressions were developed predicting the initial (pre-cloud) dry particulate single scattering coefficient (bspi), initial dry total mass scattering efficiency (MSEi), and sulfate production and scattering changes after 500 and 3000 seconds of cloud processing, respectively. Predictor variables included bulk sulfate and lognormal size parameters for accumulation and coarse modes. Regression bias was assessed for systematically varied coarse modes, and a probabilistic sensitivity analysis was conducted.; The predicted MSEi is within 20% of explicit calculations for coarse mode distributions with small geometric mean radii (rc0.4um) and 40--80% for larger mean radii, and bspi is predicted within 20--40%. Predicted initial scattering was more sensitive to input uncertainties than the other parameters. The regressions were most sensitive to measurement uncertainties associated with the accumulation mode geometric mean radius and coarse mode number concentration. A validation exercise showed MSE enhancements of 1, 6 and 12% were predicted from the regression model compared to previously observed average enhancements of 3, 7, and 19%, respectively. The predicted versus observed particulate scattering coefficients agreed within measurement uncertainty. Application of the regression models to several published aerosol distributions predicted dry MSEi ranging from 1.0 to 1.7 m 2 g-1 and MSE enhancements ranging from 2--50% and 7--100% after 500 and 3000 seconds of cloud processing, respectively. Greater efficiency enhancements were predicted for low-aerosol-mass environments than for polluted regimes. The parameterizations are a new tool for climate modelers to incorporate into existing global models' treatment of aerosol properties.
机译:气溶胶硫酸盐的云处理和光学特性对地球的辐射平衡具有重要影响,但计算限制已抑制了全球大气模型中的直接微物理(显式)模拟。在这里,我们使用一系列模拟技术描述显式行为的最新技术参数化。拉格朗日微物理宗地模型进行了修改,以包括有效的多元求解算法。广泛的初始条件因子域(代表中等清洁到中等污染的环境)用于生成对流层下部层状云的明确预测。建立了回归模型,分别预测了云处理500和3000秒后的初始(云前)干燥颗粒单次散射系数(bspi),初始干燥总质量散射效率(MSEi)以及硫酸盐的产生和散射变化。预测变量包括大量硫酸盐和对数正态大小参数,用于累积和粗模式。对回归偏差进行了系统变化的粗略模式评估,并进行了概率敏感性分析。对于具有较小几何平均半径(rc <0.4um)的粗模式分布,预测的MSEi处于显式计算的20%之内,对于较大的平均半径,预测的MSEi在40--80%之间,而bspi的预测在20--40%之内。预测的初始散射比其他参数对输入不确定性更敏感。回归对与累积模式几何平均半径和粗模式数浓度相关的测量不确定度最敏感。一项验证实验表明,与先前观察到的平均增强分别为3%,7%和19%相比,回归模型预测的MSE增强为1%,6%和12%。预测与观察到的颗粒散射系数在测量不确定度内一致。将回归模型应用到多个已公布的气溶胶分布中,分别预测在经过500和3000秒的云处理后,干MSEi的范围为1.0至1.7 m 2 g-1,MSE增强的范围为2--50%和7--100%。在低气溶胶质量的环境中,相比在污染的环境中,预计会有更大的效率提高。参数化是气候建模者将新的工具纳入现有的全球气溶胶特性处理工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号