首页> 外文学位 >Roles of transmembrane domains in the folding and assembly of the adenosine A2A receptor.
【24h】

Roles of transmembrane domains in the folding and assembly of the adenosine A2A receptor.

机译:跨膜结构域在腺苷A2A受体折叠和组装中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The subject of this thesis is the identification of the interactions that occur between transmembrane (TM) domains of G-protein coupled receptors (GPCRs), with particular emphasis on their roles in the folding, assembly, stability and oligomerization. GPCRs are integral membrane proteins characterized by seven TM helices that mediate a plethora of cellular signals across the cell plasma membrane. They modulate many physiological processes and are linked to numerous diseases but little is know about the determinants of their structures, folding, assembly, activation mechanisms and oligomeric states. GPCRs are also difficult to express and purify, which makes their structural characterization challenging. Therefore, a need exists for detailed structural studies to improve our understanding of the GPCR family. One approach to circumvent these difficulties and gain insight into the folding and assembly processes of integral membrane proteins is to study peptides corresponding to the TM domains. In this thesis, I studied the folding and assembly of the human adenosine A2A receptor (A2AR) as a representative example of human GPCRs.; We first studied in detail the folding and self-assembly properties of the TM5 domain peptide of A2AR. To characterize this peptide in membrane-like environments, we used circular dichroism (CD), gel electrophoresis, fluorescence and Forster resonance energy transfer (FRET) and analytical ultracentrifugation. We found that TM5 peptide forms dimeric structures when inserted in SDS micelles and DMPC vesicles. Then, we performed site-directed mutagenesis on the full-length A2AR to identify residues susceptible to affect receptor oligomerization. We established that mutation at position M193 in the fifth TM helix disrupts the dimers formed by A2AR. Finally, the oligomerization state of mutant receptors in living cells was tested using CFP- and YFP-tagged receptors in saturation binding assays, confocal microscopy and fluorescence spectroscopy experiments. Our results showed that the M193A mutation affects receptor trafficking to the cells plasma membrane by preventing A2AR dimer formation, confirming our in vitro results. These findings strongly indicate that the TM5 domain of A2AR is part of the contact interface between two receptors, and that M193 plays a major role in the oligomerization process.; We also studied the interactions between synthetic peptides corresponding to the seven TM domains of A2AR in order to test the hypothesis that interactions between TM domains are required for proper insertion and folding. First, we monitored the interactions between pairs of TM peptides inserted in membrane-mimetic environments by CD spectroscopy. We established that some pairs interact productively to increase helical content, suggesting that interaction between adjacent TMs can help helix formation and assembly. Then, we investigated the TM5/TM6 as a representative pair in further detail using variants of the TM6 peptide and different spectroscopic methods such as CD and fluorescence spectroscopy, and FRET. This allowed us to develop and verify our methodology. Finally, we performed a systematic analysis of the interactions between all seven helices of A2AR mixed in pair wise combination using FRET. We found that the alpha-helical content of the peptide plays a role in the folding and the interaction. We also identified a subset of specific interactions between TM domains, which we believe are related to the stability and/or the folding of the receptor. Overall, we were able to postulate from our results a model for the folding and assembly of the full-length A2AR in the membrane during its biogenesis through the translocon machinery.; In these studies, we showed that we could robustly identify and characterize interactions between TM domains of a GPCR. This is the first time that such a comprehensive study has been accomplished using peptides corresponding to TM domains of a membrane protein. The ability to
机译:本文的主题是鉴定在G蛋白偶联受体(GPCR)的跨膜(TM)域之间发生的相互作用,特别强调它们在折叠,组装,稳定性和低聚中的作用。 GPCR是不可或缺的膜蛋白,其特征在于七个TM螺旋,它们介导跨细胞质膜的大量细胞信号。它们调节许多生理过程,并与多种疾病有关,但对其结构,折叠,组装,激活机制和寡聚状态的决定因素了解甚少。 GPCR也难以表达和纯化,这使其结构表征具有挑战性。因此,需要进行详细的结构研究,以增进我们对GPCR家族的了解。规避这些困难并深入了解完整膜蛋白折叠和组装过程的一种方法是研究与TM结构域相对应的肽。在本文中,我研究了人腺苷A2A受体(A2AR)的折叠和组装,作为人GPCR的代表性实例。我们首先详细研究了A2AR TM5结构域肽的折叠和自组装特性。为了在膜样环境中表征该肽,我们使用了圆二色性(CD),凝胶电泳,荧光和Forster共振能量转移(FRET)以及分析超速离心。我们发现,TM5肽插入SDS胶束和DMPC囊泡时会形成二聚体结构。然后,我们对全长A2AR进行了定点诱变,以鉴定易于影响受体寡聚化的残基。我们确定第五个TM螺旋中M193位置的突变会破坏A2AR形成的二聚体。最后,在饱和结合测定,共聚焦显微镜和荧光光谱实验中,使用CFP和YFP标记的受体测试了活细胞中突变受体的低聚状态。我们的结果表明,M193A突变通过阻止A2AR二聚体的形成影响受体向细胞质膜的转运,从而证实了我们的体外结果。这些发现强烈表明,A2AR的TM5结构域是两个受体之间的接触界面的一部分,并且M193在寡聚过程中起主要作用。我们还研究了与A2AR的七个TM结构域相对应的合成肽之间的相互作用,以检验以下假设:正确插入和折叠需要TM结构域之间的相互作用。首先,我们通过CD光谱监测了模拟膜环境中插入的TM肽对之间的相互作用。我们建立了一些对有效地相互作用以增加螺旋含量的方法,表明相邻TM之间的相互作用可以帮助螺旋的形成和组装。然后,我们使用TM6肽的变体和不同的光谱方法(例如CD和荧光光谱法以及FRET)对作为代表对的TM5 / TM6进行了更详细的研究。这使我们能够开发和验证我们的方法。最后,我们使用FRET对成对组合混合的A2AR的所有七个螺旋之间的相互作用进行了系统分析。我们发现,肽的α-螺旋含量在折叠和相互作用中起作用。我们还确定了TM域之间特定相互作用的子集,我们认为这与受体的稳定性和/或折叠有关。总的来说,我们能够从我们的结果中提出一个模型,用于在全长A2AR的生物发生过程中通过translocon机器在膜中折叠和组装。在这些研究中,我们证明了我们可以可靠地鉴定和表征GPCR TM域之间的相互作用。这是首次使用对应于膜蛋白TM结构域的肽完成了如此全面的研究。的能力

著录项

  • 作者

    Thevenin, Damien.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号