首页> 外文学位 >Digital architectures for hybrid CMOS/nanodevice circuits.
【24h】

Digital architectures for hybrid CMOS/nanodevice circuits.

机译:混合CMOS /纳米器件电路的数字架构。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes architectures of digital memories and reconfigurable Boolean logic circuits for the prospective hybrid CMOS/nanowire/nanodevice ("CMOL") technology. The basic idea of CMOL circuits is to combine the advantages of CMOS technology (including its flexibility and high fabrication yield) with those of molecular-scale nanodevices. Two-terminal nanodevices would be naturally incorporated into nanowire crossbar fabric, enabling very high function density at acceptable fabrication costs. In order to overcome the CMOS/nanodevice interface problem, in CMOL circuits the interface is provided by sharp-tipped pins that are distributed all over the circuit area, on top of the CMOS stack.; The most straightforward possible application of CMOL circuits is terabit-scale "resistive" memories, in which nanodevices (e.g., single molecules) would be used as single-bit, memory cells, while the semiconductor subsystem would perform all the peripheral (input/output, coding/decoding, line driving, and sense amplification) functions. Using bad-bit exclusion and error-correcting codes synergistically we show that CMOL memories with a nano/CMOS pitch ratio close to 1/3 may overcome purely semiconductor memories in useful density if the fraction of bad nanodevices is below ∼ 15%, even for the 30 ns upper bound on the total access time. As the nanotechnology matures, and the pitch ratio approaches an order of magnitude, the CMOL memories may be far superior to the densest semiconductor memories by providing, e.g., 1 Tbit/cm2 density even for the plausible defect fraction of 2%.; Even greater defect tolerance (about 20% for 99% circuit yield) can be achieved in uniform a cell-FPGA-like CMOL circuits. In such circuits, two-terminal nanodevices provide programmable diode functionality for logic circuit operation, and allow circuit mapping and reconfiguration around defective nanodevices, while CMOS subsystem is used for signal restoration and latching. The cell-based architecture is based on a uniform CMOL fabric of "tiles", while each tile consists of 12 four-transistor basic cells and one latch cell. To evaluate the potential performance of CMOL FPGA we have developed a completely custom design automation tools. Using these tools we have successfully mapped on CMOL FPGA the well known Toronto 20 benchmark circuits and estimated their performance. The results have shown that, in addition to high defect tolerance, CMOL FPGA circuits may have extremely high density (more than two orders of magnitude higher that of usual CMOS FPGA with the same CMOS design rules) while operating at higher speed at acceptable power consumption.
机译:本论文描述了用于预期的混合CMOS /纳米线/纳米器件(“ CMOL”)技术的数字存储器和可重新配置的布尔逻辑电路的体系结构。 CMOL电路的基本思想是将CMOS技术的优势(包括其灵活性和高成品率)与分子级纳米器件的优势相结合。两端子纳米器件将自然地并入纳米线交叉式织物中,从而以可接受的制造成本实现了很高的功能密度。为了克服CMOS /纳米器件接口问题,在CMOL电路中,该接口由尖锐的引脚提供,这些引脚分布在CMOS堆栈顶部的整个电路区域中。 CMOL电路最直接可能的应用是兆位级“电阻”存储器,其中纳米器件(例如,单分子)将用作单位存储单元,而半导体子系统将执行所有外围设备(输入/输出) ,编码/解码,行驱动和感测放大)功能。协同使用不良位排除和纠错码,我们发现,纳米/ CMOS间距比接近1/3的CMOL存储器,即使不良纳米器件的比例低于〜15%,即使在低密度器件的情况下,也可以克服有用密度的纯半导体存储器总访问时间的30 ns上限。随着纳米技术的成熟,并且间距比接近一个数量级,即使对于可能的2%的缺陷分数,通过提供例如1 Tbit / cm2的密度,CMOL存储器可能远远优于最密集的半导体存储器。在统一的单元FPGA型CMOL电路中,甚至可以实现更大的缺陷容限(对于99%的电路成品率,约为20%)。在此类电路中,两端纳米器件为逻辑电路操作提供可编程的二极管功能,并允许在有缺陷的纳米器件周围进行电路映射和重新配置,而CMOS子系统用于信号恢复和锁存。基于单元的体系结构基于统一的CMOL的“平铺”结构,而每个图块均包含12个四晶体管基本单元和一个锁存单元。为了评估CMOL FPGA的潜在性能,我们开发了完全定制的设计自动化工具。使用这些工具,我们已经成功地在CMOL FPGA上映射了著名的Toronto 20基准电路,并评估了它们的性能。结果表明,除具有较高的缺陷容限外,CMOL FPGA电路还可以具有极高的密度(具有相同CMOS设计规则的常规CMOS FPGA密度要高出两个数量级),同时可以在可接受的功耗下以更高的速度运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号