首页> 外文学位 >New insights into the oxidation behaviours of crude oils.
【24h】

New insights into the oxidation behaviours of crude oils.

机译:对原油氧化行为的新见解。

获取原文
获取原文并翻译 | 示例

摘要

Sustainable economic development of many of the world's oil reservoirs requires application of novel technologies. High pressure air injection (HPAI) into light oil reservoir has been proven as a new alternative improved oil recovery (IOR) method for both secondary and tertiary recovery processes.; The normal aim of a high-pressure air injection process is for the oxygen from the injected air to react with a small fraction of the reservoir oil at an elevated temperature to produce a mixture of carbon dioxide and nitrogen, which mobilizes the oil downstream and sweeps oil towards the production wells. However, what is actually taking place upon air injection into oil reservoir has not been fully understood. Some misconceptions of concerning high pressure air injection process still exist because of the complexity of oxidation reactions for crude oils.; The goal of this investigation is to fingerprint the oxidation behaviour of hydrocarbons and to determine which physical and chemical processes can significantly affect the interpretation the oxidation performance for crude oils using two thermal analysis techniques, thermogravimetry and pressurized differential scanning calorimetry (PDSC), accelerating rate calorimetry (ARC).; Systematic studies are performed to investigate oxidation behaviours of several pure paraffin and aromatic hydrocarbon compounds using the thermal analysis techniques. Then, the oxidation behaviours of saturates, aromatics, resins and asphaltenes (SARA) fractions of three different types of crude oils (the light oil, medium oil and Athabasca bitumen ) are determined. Systematic experiments are also conducted on four crude oils with different compositions (the two light oils, one medium oil and Athabasca bitumen.) This study looks at the effect of pressure on the energy generation associated with the oxidation reactions in the different temperature ranges. In the end, a simplified mathematical model is developed as an aid to better understand the thermal behaviour of hydrocarbons. In this study, the preliminary tests are performed to investigate the feasibility of improving ignition characteristics by adding certain chemicals into the selected light oil sample using thermal analysis techniques.; This study addresses the important aspects of the oxidation behaviours of light oil and Athabasca bitumen. It is concluded that the behaviour of light crude oil is substantially different from that of heavy oils. For the light oils tested, in the low temperature range (350°C), vaporization is a dominant physical process. Under certain conditions, such as high pressure and a suitable concentration of evaporated hydrocarbon fraction or/and decomposed fraction in the vapour phase, bond scission reactions in the vapour phase may be dominant. Therefore, the oxygen addition or low temperature oxidation reactions in the liquid phase and bond scission reactions in the vapour phase may overlap. The largest amount and the highest rate of energy generation occur in the low temperature range. The combustion or high temperature oxidation reactions in the high temperature range are weak for the light oils and the medium oil tested, due to insufficient fuel availability for those reactions. In contrast, for Athabasca bitumen in the low temperature range, oxygen addition reactions are dominant but the energy generation is at a low level. In the temperatures above 400°C, bond scission or high temperature oxidation (combustion) reactions are intensive, with the higher amount and the faster rate of energy generation.; The experimental data further addresses the effect of composition of crude oils on their oxidation behaviours, which can be an aid to understanding the difference in oxidation behaviours between the light oils and Athabasca bitumen. These data provides a better understanding of the oxidation reaction mechanism for crude oils. This information is vital for interpreting and optimizing field performance during a
机译:世界许多油藏的可持续经济发展都需要应用新技术。向轻质油层中注入高压空气(HPAI)已被证明是用于二次采油和三次采油过程的一种新的替代改进采油(IOR)方法。高压空气注入过程的正常目标是使注入的空气中的氧气与一小部分储油器在升高的温度下反应,生成二氧化碳和氮气的混合物,从而使下游的油动员并扫除。向生产井注油。但是,尚未完全了解向储油罐中注入空气时实际发生的情况。由于原油氧化反应的复杂性,仍然存在一些关于高压空气注入过程的误解。这项研究的目的是使用两种热分析技术(热重分析法和加压差示扫描量热法(PDSC)),加速速率,对碳氢化合物的氧化行为进行指纹识别,并确定哪些物理和化学过程会严重影响原油的氧化性能的解释。量热法(ARC)。使用热分析技术进行了系统的研究,以研究几种纯链烷烃和芳烃化合物的氧化行为。然后,确定了三种不同类型的原油(轻质油,中质油和阿萨巴斯卡沥青)的饱和,芳烃,树脂和沥青质(SARA)馏分的氧化行为。还对四种具有不同成分的原油(两种轻油,一种中等油和阿萨巴斯卡沥青)进行了系统性实验。这项研究着眼于压力在不同温度范围内对与氧化反应相关的能量产生的影响。最后,开发了简化的数学模型以帮助更好地理解碳氢化合物的热行为。在这项研究中,进行了初步测试,以研究通过使用热分析技术向选定的轻油样品中添加某些化学物质来改善点火特性的可行性。这项研究解决了轻质油和阿萨巴斯卡沥青的氧化行为的重要方面。结论是,轻质原油的行为与重质原油的行为有很大不同。对于所测试的轻质油,在低温范围(<350°C)中,汽化是主要的物理过程。在某些条件下,例如高压和气相中蒸发的烃馏分或/和分解的馏分的合适浓度,气相中的键断裂反应可能占主导。因此,液相中的氧加成或低温氧化反应和气相中的键断裂反应可能重叠。在低温范围内,能量的产生量最大且速率最高。对于轻油和测试的中油,在高温范围内的燃烧或高温氧化反应较弱,这是因为这些反应的燃料供应不足。相反,对于低温范围内的阿萨巴斯卡沥青,氧加成反应占主导,但能量产生处于较低水平。在高于400°C的温度下,键断裂或高温氧化(燃烧)反应会很激烈,并且产生的能量更高且速率更快。实验数据进一步解决了原油成分对其氧化行为的影响,这有助于理解轻质油与阿萨巴斯卡沥青之间的氧化行为差异。这些数据可以更好地理解原油的氧化反应机理。这些信息对于解释和优化现场性能至关重要。

著录项

  • 作者

    Li, Jian.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 300 p.
  • 总页数 300
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 石油、天然气工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号