首页> 外文学位 >Study of a possible magnetite biosignature in Martian meteorite ALH84001: Implications for the biological toxicology of Mars.
【24h】

Study of a possible magnetite biosignature in Martian meteorite ALH84001: Implications for the biological toxicology of Mars.

机译:火星陨石ALH84001中可能的磁铁矿生物特征研究:对火星生物毒理学的影响。

获取原文
获取原文并翻译 | 示例

摘要

"Why do we have such a longstanding fascination with Mars? Very simply put, it's about life. The search for life elsewhere in our Solar System has been a major driver for exploring Mars, pretty much since we began seriously looking at that planet."1 The major objective of this work is to describe signs of possible life, that is biosignatures, in rocks from Mars if indeed they are present. Biosignatures are specific identifiable properties that result from living things; they may be implanted in the environment and may persist even if the living thing is no longer present. Over 100 mineral biosignatures have been discussed in the literature; however, only one, magnetite, is addressed by this study. Magnetite is found in many rock types on earth and in meteorites. Previous studies of terrestrial magnetite have used few properties, such as size and chemical composition, to determine one of the modes of origins for magnetite (e.g., biogenic, inorganic). This study has established a rigorous set of six criteria for the identification of intracellularly precipitated biogenic magnetite. These criteria have been applied to a subpopulation of magnetites embedded within carbonates in Martian meteorite ALH84001. These magnetites are found to be chemically and physically indistinguishable from those produced by magnetotactic bacteria strain MV-1, hence, they were likely formed by biogenic processes on ancient Mars. These criteria may be also used to distinguish origins for magnetites from terrestrial samples with complex or unknown histories.;The presence of purported past life on early Mars suggests that, if life once began it may still exist today, possibly in oases in the Martian subsurface. Future manned missions should consider potential hazards of an extant biological environment(s) on Mars.;1 Quote attributed to Jack Farmer of Arizona State University in discussing NASA's program of Mars Exploration (see "Deciphering Mars: Follow the Water," Astrobiology Magazine Sept. 12, 2005)
机译:“为什么我们对火星有着如此悠久的迷恋?简而言之,这与生命有关。寻找太阳系中其他地方的生命一直是探索火星的主要动力,这几乎是自我们开始认真研究该行星以来。” 1这项工作的主要目的是描述火星岩石中可能存在的生命迹象,即生物特征(如果确实存在的话)。生物签名是由生物产生的可识别的特定属性。它们可能被植入环境中,并且即使不再存在生物也可能持续存在。文献中已经讨论了100多种矿物生物特征。然而,这项研究仅涉及一种磁铁矿。磁铁矿存在于地球和陨石中的许多岩石类型中。先前对陆地磁铁矿的研究很少使用诸如尺寸和化学组成之类的特性来确定磁铁矿的起源方式之一(例如,生物成因,无机物)。这项研究建立了一套严格的六项标准,用于鉴定细胞内沉淀的生物磁铁矿。这些标准已应用于埋藏在火星陨石ALH84001中碳酸盐内的磁铁矿亚群。发现这些磁铁矿与趋磁细菌菌株MV-1产生的磁铁矿在化学和物理上无法区分,因此,它们很可能是由古代火星上的生物成因形成的。这些标准还可用于区分具有复杂或未知历史的地球样本中磁铁矿的起源。;据称,火星早期存在的过往生命表明,如果生命一旦开始,今天可能仍然存在,可能存在于火星地下的绿洲中。 。未来的载人飞行任务应考虑火星上现有生物环境的潜在危害。; 1亚利桑那州立大学杰克·法默在讨论NASA的火星探测计划时引用的话(请参阅《天体生物学》杂志9月的“破译火星:跟随水流”) (2005年12月12日)

著录项

  • 作者单位

    Texas Southern University.;

  • 授予单位 Texas Southern University.;
  • 学科 Geology.;Chemistry Inorganic.;Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;无机化学;天文学;
  • 关键词

  • 入库时间 2022-08-17 11:39:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号