首页> 外文学位 >Techniques in manifold learning: Intrinsic dimension and principal surface estimation.
【24h】

Techniques in manifold learning: Intrinsic dimension and principal surface estimation.

机译:流形学习中的技术:本质尺寸和主表面估计。

获取原文
获取原文并翻译 | 示例

摘要

Intrinsic dimension estimation is a fundamental problem in manifold learning. In applications, high-dimensional data frequently exhibit an underlying lower-dimensional structure that, if understood, would allow for faster and more complete analysis of the data. Understanding of this underlying structure requires first determining what the dimension of that structure is. In this dissertation, a new intrinsic dimension estimator is proposed. This estimator does not estimate the intrinsic dimension of a set directly, rather it estimates the dimension of the sampling measure. This approach acknowledges the fact that in applications the lower-dimensional structure is unknown; the only information about the set that is available to researchers is what is collected via some sampling method. Theoretical performance guarantees for this estimator are proven that show that the estimator will perform well with only very mild restrictions. Finally, the results of several numerical experiments are provided as evidence that the estimator performs as well or better than the estimators that have been proposed in the literature.;Having determined the intrinsic dimension of a set, it remains to examine the geometry of the underlying lower-dimensional structure. This dissertation examines a new technique called Kernel Map Manifolds that has been proposed by Samuel Gerber to do precisely this. The Kernel Map Manifolds algorithm uses the complementary ideas of principal surfaces and kernel regression to estimate the geometry of the underlying structure of sample data. This algorithm relies on a conjecture about the nature of the class of minimizers of a distance function. If this conjecture is true, then a gradient descent method can be employed to produce estimated coordinate maps for a principal surface of a distribution. While this conjecture is not addressed directly herein, what is shown is that if the coordinate map of a principal surface of a given distribution is known, then sample data can be used in conjunction with this knowledge to produce accurate estimates of the principal surface thereby showing that if the conjecture is true then the Kernel Map Manifolds algorithm will produce accurate estimates of the underlying lower-dimensional geometry of the set.
机译:内在维数估计是流形学习中的一个基本问题。在应用程序中,高维数据经常表现出底层的低维结构,如果可以理解的话,它将允许更快,更完整地分析数据。要了解此基础结构,首先需要确定该结构的尺寸。本文提出了一种新的内在维数估计器。该估计器不会直接估计集合的内在维度,而是会估计采样度量的维度。这种方法承认以下事实:在应用程序中,较低维的结构是未知的。研究人员可获得的关于集合的唯一信息是通过某种采样方法收集的信息。证明了该估计器的理论性能保证,表明该估计器将在仅非常轻微的限制下表现良好。最后,提供了一些数值实验的结果,以证明估计器的性能比文献中提出的估计器好或更好。确定了集合的内在维数后,仍然需要检查底层的几何低维结构。本文研究了Samuel Gerber提出的一种名为Kernel Map Manifolds的新技术。核图流形算法使用主曲面和核回归的互补思想来估计样本数据基础结构的几何形状。该算法依赖于关于距离函数的最小化器类别的性质的一种推测。如果这个猜想是正确的,则可以采用梯度下降法来生成分布主表面的估计坐标图。尽管这里没有直接解决这个猜想,但显示的是,如果已知给定分布的主表面的坐标图,则可以结合此知识使用样本数据来生成主表面的准确估计,从而表明如果猜想为真,则内核映射流形算法将生成该集合的基础低维几何的准确估计。

著录项

  • 作者

    Purcell, Michael Patrick.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Mathematics.;Statistics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号