首页> 外文学位 >Unmanned Aerial Vehicle trajectory tracking using Type-2 Fuzzy Logic.
【24h】

Unmanned Aerial Vehicle trajectory tracking using Type-2 Fuzzy Logic.

机译:使用2型模糊逻辑的无人机航迹跟踪。

获取原文
获取原文并翻译 | 示例

摘要

The use of Unmanned Aerial Vehicles (UAVs) has expanded considerably over the last decade, especially since they have shown their value in military and civilian operations. One major problem in UAV development however is their ability to operate in an environment that contains a significant level of uncertainties. For a controller, uncertainties can take the form of plant parameter variations and disturbances. In order to investigate UAV controller design, and their performance in the presence of uncertainties, two controllers were developed using Fuzzy Logic (FL). The overall design of both controllers was identical except for the roll controller, for which one used Type-1 Fuzzy Logic (T1 FL) and the other used Type-2 Fuzzy Logic (T2 FL). The performance of both controllers was tested on a six degrees of freedom model of the Aerosonde aircraft constructed with Matlab/Simulink Aerosim Blockset. A Genetic Algorithm (GA) was developed and used to optimize the scaling gains as well as the Footprint of Uncertainty (FOU) for the T2 FL controller. The GA proved successful at optimizing both scaling gains and the FOU. Various configurations of the FOU with different spreads, sigma, were trialed and both controllers were compared in simulations with and without uncertainties. Several T2 FL controller FOU configurations outperformed the T1 FL controller showing the superiority of T2 FL. The performances of both roll controllers however, deteriorated greatly when tested in the presence of uncertainties. An adaptation mechanism, the Fuzzy Model Reference Self Tuning Controller (FMRSTC), was developed and implemented on the highest performing T2 FL controller. The FMRSTC proved to be very effective at following the model reference; however, it was unstable in the presence of disturbances. A lateral track control strategy using potential fields was also developed and tested in simulations. The lateral track control strategy proved to be very effective at reducing the cross track error between waypoints even in the presence of strong winds.;Keywords: Unmanned Aerial Vehicle, Type-2 Fuzzy Logic Controller, Genetic Algorithm Tuning, Trajectory Tracking, Lateral Tracking Control
机译:在过去十年中,无人飞行器(UAV)的使用已大大扩展,特别是因为它们已经在军事和民用行动中显示了其价值。然而,无人机开发中的一个主要问题是它们在不确定性很高的环境中运行的能力。对于控制器,不确定性可以采取工厂参数变化和干扰的形式。为了研究无人机控制器的设计及其在不确定情况下的性能,使用模糊逻辑(FL)开发了两个控制器。除侧倾控制器外,两个控制器的总体设计相同,其中一个控制器使用1型模糊逻辑(T1 FL),另一个控制器使用2型模糊逻辑(T2 FL)。在使用Matlab / Simulink Aerosim模块组构建的Aerosonde飞机的六自由度模型上测试了这两种控制器的性能。开发了一种遗传算法(GA),并将其用于优化T2 FL控制器的缩放增益以及不确定性足迹(FOU)。事实证明,遗传算法在优化缩放增益和FOU方面均取得了成功。试验了具有不同利差sigma的FOU的各种配置,并在有和没有不确定性的仿真中比较了两种控制器。几个T2 FL控制器的FOU配置优于T1 FL控制器,显示了T2 FL的优越性。但是,在存在不确定性的情况下进行测试时,两个侧倾控制器的性能都会大大降低。开发了一种自适应机制,即模糊模型参考自整定控制器(FMRSTC),并在性能最高的T2 FL控制器上实现。事实证明,FMRSTC在遵循模型参考方面非常有效;但是,在有干扰的情况下不稳定。还开发了利用势场的横向航迹控制策略,并在模拟中进行了测试。横向跟踪控制策略被证明在减少强风的情况下也能有效减少航路点之间的横向跟踪误差。关键词:无人机,2型模糊逻辑控制器,遗传算法调整,轨迹跟踪,横向跟踪控制

著录项

  • 作者

    Lemire, Christian.;

  • 作者单位

    Royal Military College of Canada (Canada).;

  • 授予单位 Royal Military College of Canada (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.A.Sc.
  • 年度 2008
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号