首页> 外文学位 >Evaluating DSGE models for monetary and fiscal policy analysis.
【24h】

Evaluating DSGE models for monetary and fiscal policy analysis.

机译:评估DSGE模型以进行货币和财政政策分析。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation evaluates dynamic stochastic general equilibrium (DSGE) models that are widely used for policy analysis at central banks and other policy institutions. DSGE models, like all economic models, abstract in many ways from reality and are misspecified along certain known and unknown dimensions. This dissertation adapts the posterior predictive analysis, well-known in the statistics literature, to highlight the strengths and weaknesses of DSGE models as they relate to the intended task of policy analysis.;The first chapter provides a motivation and introduction to the thesis. In the second chapter we adapt the tools of prior and posterior predictive analysis to the DSGE context and illustrate their usefulness in highlighting the discrepancies between the model and the realized sample. We argue that standard criticisms of prior and posterior predictive analysis, whatever their merits in other contexts, miss the point in the DSGE context. We illustrate that posterior predictive analysis, in particular, can be useful for DSGE model evaluation and it can be viewed as a natural pragmatic Bayesian response to a murky modelling problem. In the third chapter, we apply this framework to evaluate a DSGE model for the task of monetary policy analysis. We argue that policymaking at central banks can be characterized as interpreting the structural sources of unexpected outcomes in the observed data and accordingly acting upon it. In the DSGE context this amounts to checking whether the model implied structure (first and second moments) of the one-step ahead forecast errors is consistent with the structure observed on the realized sample. We show that in practice, in order to reconcile the U.S. marco dataset with the iconic Smets-Wouters model, we need that the observed sample must involve a highly unlikely sample correlation of structural shocks that are assumed to be uncorrelated in the model.;The fourth chapter is an empirical exercise to shed light on fiscal policy effectiveness at the zero bound for interest rates. We estimate the fiscal policy multipliers for taxes and spending in Japan both before and after the economy hit the zero lower bound in the mid nineties using a tax-code based structural VAR identification methodology. The exercise is an attempt to see if there is enough information in the data to resolve whether the fiscal policy operates differently at the zero lower bound and finds some useful results, but mainly concludes that the data are not sufficiently informative to resolve the issue using these methods.;Keywords: Bayesian Analysis; DSGE Model Evaluation; Forecast Errors; Monetary Policy; Fiscal Policy; Zero Lower Bound; Structural VAR
机译:本文对动态随机一般均衡模型(DSGE)进行了评估,该模型广泛用于央行和其他政策机构的政策分析。与所有经济模型一样,DSGE模型以多种方式从现实中抽象出来,并沿某些已知和未知维度被错误地指定。本文采用了统计文献中众所周知的后验预测分析方法,以突出DSGE模型与政策分析的预期任务相关的优势和劣势。第一章为本论文提供了动机和引言。在第二章中,我们将先验和后验预测分析工具应用于DSGE上下文,并说明它们在强调模型与实际样本之间的差异方面的有用性。我们认为,对先验和后验预测分析的标准批评,无论其在其他情况下的优点,都错过了DSGE情况下的观点。我们举例说明,后验预测分析尤其可以用于DSGE模型评估,并且可以视为对模糊模型问题的自然实用的贝叶斯响应。在第三章中,我们将这个框架应用于评估货币政策分析任务的DSGE模型。我们认为,中央银行的决策可以表征为解释观察到的数据中意外结果的结构来源,并据此采取行动。在DSGE上下文中,这相当于检查单步提前预测误差的模型隐含结构(第一时刻和第二时刻)是否与在实际样本中观察到的结构一致。我们展示了在实践中,为了使美国马可数据集与标志性的Smets-Wouters模型相一致,我们需要观察到的样本必须包含极不可能的结构震荡的样本相关性,而这些震荡在模型中是不相关的。第四章是实证研究,以阐明在利率为零的情况下的财政政策有效性。我们使用基于税法的结构化VAR识别方法,估算了经济在90年代中期达到零下限之前和之后,日本税收和支出的财政政策乘数。此练习是为了尝试查看数据中是否有足够的信息来解决财政政策是否在零下限处有所不同并找到一些有用的结果,但主要是得出结论,即数据不足以提供信息来解决这些问题。关键词:贝叶斯分析DSGE模型评估;预测误差;货币政策;财政政策;下限为零;结构VAR

著录项

  • 作者

    Gupta, Abhishek.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Statistics.;Economics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号