首页> 外文学位 >Estimating CSM-CERES-Maize genetic coefficients and soil parameters and evaluating model response to varying nitrogen management strategies under North Carolina conditions.
【24h】

Estimating CSM-CERES-Maize genetic coefficients and soil parameters and evaluating model response to varying nitrogen management strategies under North Carolina conditions.

机译:在北卡罗莱纳州条件下,估计CSM-CERES-玉米的遗传系数和土壤参数,并评估模型对不同氮管理策略的响应。

获取原文
获取原文并翻译 | 示例

摘要

CSM-CERES-Maize has been extensively used to simulate corn growth and grain production in various locations worldwide, but has not been evaluated previously for use in North Carolina. The first objective of this study were to calibrate CSM-CERES-Maize soil parameters and genetic coefficients using Official Variety Trial data from 60 site-years for 53 maize genotypes, and to determine the suitability of the fitting technique and variety trial data for model calibration. A stepwise calibration procedure with grid search algorithm was utilized: (1) two genetic coefficients which determine anthesis and physiological maturity dates were adjusted based on planting date and growing degree day requirements for each hybrid; and (2) plant available soil water and rooting profile were adjusted iteratively with two genetic coefficients affecting yield. Cross validation was used to evaluate the suitability of this approach for estimating soil parameters and genetic coefficients.;Results indicate that the CSM-CERES-Maize model can be used in North Carolina to simulate corn growth under non-limiting nitrogen conditions and Official Variety Trial data can be used to estimate genetic coefficients, although the CSM-CERES-Maize over-estimated yield for low yield environments and under-estimated it for high yield environments for some hybrids.;The second objective of this study was to examine the ability of the CSM-CERES-Maize model to simulate corn response to varying irrigation and nitrogen application strategies. Yield data for a total of 88 irrigation/nitrogen treatments with only one cultivar (Pioneer 31G98) from three fields in Lewiston, North Carolina were available for comparison. Procedures were: (1) develop realistic soil profiles for the three fields; (2) compare simulated CSM-CERES-Maize corn yields to measured yields for all 88 treatments; (3) adjust soil parameters in an iterative process in order to improve simulation of corn yields for these treatments; and (4) determine the importance of each soil parameter to simulated crop yields.;Simulated yields did not match observed yields well using our initial soil profiles, with Relative Root Mean Square Error (RRMSE) values of 17.5, 38.4, and 50.1% for the three fields. The iterative adjustment of soil parameters was successful in determining a set of soil parameters for each field such that the RRMSE values for yield improved to 8.2, 7.8, and 7.4%, respectively. Simulated yield using these optimized parameters generally fell within ±Standard Error (SE) of the measured yield. The soil fertility factor, SLPF, ranged from 1.27 to 1.34 for these fields, much higher than the default value of 1.0. SRGF, the root growth factor, also had a very different pattern than the expected exponential pattern, which begins with a value of 1.0 in the top 15 cm of soil and declines to 0.078 by 135 cm. The optimized pattern of SRGF for all three fields started with a value of 0.1 in the layers above 45 cm, with larger values in the deeper layers.;The importance of each adjusted soil parameter was investigated by setting it back to its starting value while the other adjusted parameters were left at the optimized value. When SRGF was returned to an exponential pattern, simulated yields for irrigated treatments which received a side dressing of N at visual tasseling were lower than those for an irrigated treatment which did not receive this second application. Because new root length is distributed across the soil profile by the model, we recommend necessary changes to CSM-CERES-Maize in order for the model to be used to predict crop response to split applications of N.
机译:CSM-CERES-玉米在世界各地已广泛用于模拟玉米生长和谷物生产,但以前尚未经过评估以用于北卡罗来纳州。这项研究的第一个目标是使用来自60个站点年的官方品种试验数据对53个玉米基因型校准CSM-CERES-玉米土壤参数和遗传系数,并确定拟合技术和品种试验数据对模型校准的适用性。 。利用网格搜索算法的逐步标定程序:(1)根据每个杂交品种的播种日期和生长天数的要求,对决定花期和生理成熟日期的两个遗传系数进行了调整; (2)利用影响产量的两个遗传系数对植物的土壤水分和生根特性进行迭代调整。交叉验证用于评估该方法对估算土壤参数和遗传系数的适用性。结果表明,CSM-CERES-玉米模型可在北卡罗来纳州用于模拟非限制性氮条件下的玉米生长和官方品种试验尽管CSM-CERES-玉米在低产量环境下高估了产量,而在某些杂交品种的高产环境下低估了产量,但数据可用于估算遗传系数。 CSM-CERES-玉米模型可模拟玉米对不同灌溉和施氮策略的反应。北卡罗来纳州刘易斯顿三个田地中仅使用一个品种(Pioneer 31G98)的总共88种灌溉/氮肥处理的产量数据可供比较。程序是:(1)为这三个油田开发逼真的土壤剖面; (2)将模拟的CSM-CERES-玉米玉米产量与所有88种处理的测得产量进行比较; (3)在迭代过程中调整土壤参数,以改善这些处理方法对玉米产量的模拟; (4)确定每个土壤参数对模拟作物产量的重要性。使用我们的初始土壤剖面,模拟产量与观测到的产量并不完全匹配,相对均方根误差(RRMSE)值分别为17.5、38.4和50.1%这三个领域。土壤参数的迭代调整成功地确定了每个田地的一组土壤参数,以使产量的RRMSE值分别提高到8.2%,7.8%和7.4%。使用这些优化参数模拟的产量通常落在所测得产量的±标准误差(SE)之内。这些田地的土壤肥力因子SLPF在1.27至1.34的范围内,远远高于默认值1.0。根生长因子SRGF的模式也与预期的指数模式大不相同,它从土壤表层15 cm处的值开始为1.0,到135 cm处下降至0.078。对于所有三个场而言,SRGF的优化模式都始于45 cm以上的层中0.1的值,而深层中的值较大。;通过将每个调整后的土壤参数恢复为初始值来研究每个调整后的土壤参数的重要性。其他调整后的参数保留为最佳值。当SRGF恢复到指数模式时,在目测抽穗时接受N追肥的灌溉处理的模拟产量要低于未接受第二次施用的灌溉处理的模拟产量。由于该模型将新的根长分布在整个土壤剖面上,因此我们建议对CSM-CERES-玉米进行必要的更改,以便将该模型用于预测作物对N的不同施用的反应。

著录项

  • 作者

    Yang, Zhengyu.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Agriculture Agronomy.;Agriculture Plant Culture.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号