首页> 外文学位 >Intramolecular tunnel and regulatory mechanisms of asparagine synthetase (ASNS).
【24h】

Intramolecular tunnel and regulatory mechanisms of asparagine synthetase (ASNS).

机译:天冬酰胺合成酶(ASNS)的分子内隧道和调节机制。

获取原文
获取原文并翻译 | 示例

摘要

So far, more and more evidence from several actively studied polyfunctional enzymes indicate the existence of an intramolecular tunnel. Among those enzymes, ammonia/ammonium is the most common intermediate thus far. As one of these enzymes, the tunnel in asparagine synthetase B (ASB) from Escherichia coli is about 20 A long. It connects two active sites, a glutaminase site and a synthetase site.; My work on asparagine synthetase (ASNS), an enzyme involved in leukemia resistance to the treatment using asparaginase, has focused on the following aspects: (1) kinetic characterization of ASNS; (2) structure activity relationships; (3) regulatory mechanisms.; In this work, I developed a first quantitative NMR based assay (K. Li et al., Biochemistry, 2007, 46 [16], 4840-4849) and studied the efficiency of ammonia tunneling in ASB catalyzed reaction.; The function of bioactive macromolecule can only be understood under the structural context. Therefore, to study the function of the intramolecular tunnel in ASB, first I identified the tunnel residues by computational methods. Most of the tunnel residues are conserved from prokaryote to eukaryote species. The studies of several tunnel mutants showed that one of the mutants may have a blocked tunnel.; Among the family of amidotransferases, the two half reactions are strictly coupled. While ASNS can catalyze the hydrolysis of glutamine without other substrates, this raises the interest in the regulatory mechanisms of this enzyme, which prevents it from consuming glutamine and releasing free ammonia. As part of my PhD research, I investigated the mechanisms of product inhibition to this enzyme. Under physiological conditions, the activity of this enzyme may be inhibited significantly by asparagine, which prevents cells from wasting glutamine and producing toxic ammonia in vivo.; So far, only one crystal structure of glutamine dependent asparagine synthetase was reported. To further understand the function of ASNS, especially of human enzyme, more crystal structures are needed. Therefore, co-working with Alexandria Berry, I investigated the binding of substrate/transition state analog to hASNS and successfully prepared inhibitor bound enzyme. The prepared enzyme has been sent for crystal analysis.
机译:迄今为止,越来越多的来自几种积极研究的多功能酶的证据表明存在分子内隧道。在这些酶中,氨/铵是迄今为止最常见的中间体。作为这些酶之一,来自大肠杆菌的天冬酰胺合成酶B(ASB)中的隧道长约20A。它连接两个活性位点,谷氨酰胺酶位点和合成酶位点。我对天冬酰胺合成酶(ASNS)的研究是一种涉及白血病对使用天冬酰胺酶治疗的耐药性的酶,研究工作集中在以下几个方面:(1)ASNS的动力学表征; (2)结构活动关系; (3)监管机制。在这项工作中,我开发了第一个基于NMR定量分析的方法(K. Li等人,Biochemistry,2007,46 [16],4840-4849),并研究了ASB催化反应中氨隧穿的效率。仅在结构背景下才能理解生物活性大分子的功能。因此,为了研究分子内隧道在ASB中的功能,我首先通过计算方法确定了隧道残基。从原核生物到真核生物,大多数隧道残留物都得到了保护。对几种隧道突变体的研究表明,其中一个突变体可能具有封闭的隧道。在酰胺基转移酶家族中,两个半反应是严格偶联的。尽管ASNS可以在没有其他底物的情况下催化谷氨酰胺的水解,但这引起了对该酶调节机制的兴趣,这阻止了该酶消耗谷氨酰胺并释放游离氨。作为博士研究的一部分,我研究了产物对该酶的抑制作用机理。在生理条件下,该酶的活性可能被天冬酰胺显着抑制,这可防止细胞在体内浪费谷氨酰胺并产生有毒的氨。迄今为止,仅报道了谷氨酰胺依赖性天冬酰胺合成酶的一种晶体结构。为了进一步了解ASNS的功能,尤其是人类酶的功能,需要更多的晶体结构。因此,我与Alexandria Berry共同研究了底物/过渡态类似物与hASNS的结合,并成功制备了抑制剂结合酶。制备的酶已送去进行晶体分析。

著录项

  • 作者

    Li, Kai.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

  • 入库时间 2022-08-17 11:39:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号